mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2025-12-18 06:24:20 +01:00
Create an abstract MemoryProviderSingleton class. Pass config instead of instantiating a new one where used.
This commit is contained in:
51
scripts/memory/pinecone.py
Normal file
51
scripts/memory/pinecone.py
Normal file
@@ -0,0 +1,51 @@
|
||||
|
||||
import pinecone
|
||||
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
class PineconeMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
pinecone_api_key = cfg.pinecone_api_key
|
||||
pinecone_region = cfg.pinecone_region
|
||||
pinecone.init(api_key=pinecone_api_key, environment=pinecone_region)
|
||||
dimension = 1536
|
||||
metric = "cosine"
|
||||
pod_type = "p1"
|
||||
table_name = "auto-gpt"
|
||||
# this assumes we don't start with memory.
|
||||
# for now this works.
|
||||
# we'll need a more complicated and robust system if we want to start with memory.
|
||||
self.vec_num = 0
|
||||
if table_name not in pinecone.list_indexes():
|
||||
pinecone.create_index(table_name, dimension=dimension, metric=metric, pod_type=pod_type)
|
||||
self.index = pinecone.Index(table_name)
|
||||
|
||||
def add(self, data):
|
||||
vector = get_ada_embedding(data)
|
||||
# no metadata here. We may wish to change that long term.
|
||||
resp = self.index.upsert([(str(self.vec_num), vector, {"raw_text": data})])
|
||||
_text = f"Inserting data into memory at index: {self.vec_num}:\n data: {data}"
|
||||
self.vec_num += 1
|
||||
return _text
|
||||
|
||||
def get(self, data):
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def clear(self):
|
||||
self.index.delete(deleteAll=True)
|
||||
return "Obliviated"
|
||||
|
||||
def get_relevant(self, data, num_relevant=5):
|
||||
"""
|
||||
Returns all the data in the memory that is relevant to the given data.
|
||||
:param data: The data to compare to.
|
||||
:param num_relevant: The number of relevant data to return. Defaults to 5
|
||||
"""
|
||||
query_embedding = get_ada_embedding(data)
|
||||
results = self.index.query(query_embedding, top_k=num_relevant, include_metadata=True)
|
||||
sorted_results = sorted(results.matches, key=lambda x: x.score)
|
||||
return [str(item['metadata']["raw_text"]) for item in sorted_results]
|
||||
|
||||
def get_stats(self):
|
||||
return self.index.describe_index_stats()
|
||||
Reference in New Issue
Block a user