mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2025-12-17 22:14:28 +01:00
Merge with master
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
PINECONE_API_KEY=your-pinecone-api-key
|
||||
PINECONE_ENV=your-pinecone-region
|
||||
OPENAI_API_KEY=your-openai-api-key
|
||||
TEMPERATURE=1
|
||||
ELEVENLABS_API_KEY=your-elevenlabs-api-key
|
||||
ELEVENLABS_VOICE_1_ID=your-voice-id
|
||||
ELEVENLABS_VOICE_2_ID=your-voice-id
|
||||
@@ -9,11 +10,7 @@ FAST_LLM_MODEL=gpt-3.5-turbo
|
||||
GOOGLE_API_KEY=
|
||||
CUSTOM_SEARCH_ENGINE_ID=
|
||||
USE_AZURE=False
|
||||
OPENAI_AZURE_API_BASE=your-base-url-for-azure
|
||||
OPENAI_AZURE_API_VERSION=api-version-for-azure
|
||||
OPENAI_AZURE_DEPLOYMENT_ID=deployment-id-for-azure
|
||||
OPENAI_AZURE_CHAT_DEPLOYMENT_ID=deployment-id-for-azure-chat
|
||||
OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID=deployment-id-for-azure-embeddigs
|
||||
EXECUTE_LOCAL_COMMANDS=False
|
||||
IMAGE_PROVIDER=dalle
|
||||
HUGGINGFACE_API_TOKEN=
|
||||
USE_MAC_OS_TTS=False
|
||||
|
||||
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -26,7 +26,7 @@ By following these guidelines, your PRs are more likely to be merged quickly aft
|
||||
- [ ] I have thoroughly tested my changes with multiple different prompts.
|
||||
- [ ] I have considered potential risks and mitigations for my changes.
|
||||
- [ ] I have documented my changes clearly and comprehensively.
|
||||
- [ ] I have not snuck in any "extra" small tweaks changes <!-- Submit these as separate Pull Reqests, they are the easiest to merge! -->
|
||||
- [ ] I have not snuck in any "extra" small tweaks changes <!-- Submit these as separate Pull Requests, they are the easiest to merge! -->
|
||||
|
||||
<!-- If you haven't added tests, please explain why. If you have, check the appropriate box. If you've ensured your PR is atomic and well-documented, check the corresponding boxes. -->
|
||||
|
||||
|
||||
2
.github/workflows/ci.yml
vendored
2
.github/workflows/ci.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
||||
|
||||
- name: Lint with flake8
|
||||
continue-on-error: false
|
||||
run: flake8 scripts/ tests/ --select E303,W293,W291,W292,E305
|
||||
run: flake8 scripts/ tests/ --select E303,W293,W291,W292,E305,E231,E302
|
||||
|
||||
- name: Run unittest tests with coverage
|
||||
run: |
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -7,9 +7,11 @@ package-lock.json
|
||||
auto_gpt_workspace/*
|
||||
*.mpeg
|
||||
.env
|
||||
azure.yaml
|
||||
*venv/*
|
||||
outputs/*
|
||||
ai_settings.yaml
|
||||
last_run_ai_settings.yaml
|
||||
.vscode
|
||||
.idea/*
|
||||
auto-gpt.json
|
||||
@@ -19,3 +21,6 @@ log.txt
|
||||
.coverage
|
||||
coverage.xml
|
||||
htmlcov/
|
||||
|
||||
# For Macs Dev Environs: ignoring .Desktop Services_Store
|
||||
.DS_Store
|
||||
|
||||
49
README.md
49
README.md
@@ -2,8 +2,8 @@
|
||||
|
||||

|
||||

|
||||
[](https://discord.gg/PQ7VX6TY4t)
|
||||
[](https://github.com/Torantulino/Auto-GPT/actions/workflows/unit_tests.yml)
|
||||
[](https://discord.gg/PQ7VX6TY4t)
|
||||
[](https://github.com/Torantulino/Auto-GPT/actions/workflows/unit_tests.yml)
|
||||
|
||||
Auto-GPT is an experimental open-source application showcasing the capabilities of the GPT-4 language model. This program, driven by GPT-4, chains together LLM "thoughts", to autonomously achieve whatever goal you set. As one of the first examples of GPT-4 running fully autonomously, Auto-GPT pushes the boundaries of what is possible with AI.
|
||||
|
||||
@@ -32,21 +32,28 @@ Your support is greatly appreciated
|
||||
|
||||
- [Auto-GPT: An Autonomous GPT-4 Experiment](#auto-gpt-an-autonomous-gpt-4-experiment)
|
||||
- [Demo (30/03/2023):](#demo-30032023)
|
||||
- [💖 Help Fund Auto-GPT's Development](#-help-fund-auto-gpts-development)
|
||||
- [Table of Contents](#table-of-contents)
|
||||
- [🚀 Features](#-features)
|
||||
- [📋 Requirements](#-requirements)
|
||||
- [💾 Installation](#-installation)
|
||||
- [🔧 Usage](#-usage)
|
||||
- [Logs](#logs)
|
||||
- [🗣️ Speech Mode](#️-speech-mode)
|
||||
- [🔍 Google API Keys Configuration](#-google-api-keys-configuration)
|
||||
- [Setting up environment variables](#setting-up-environment-variables)
|
||||
- [Redis Setup](#redis-setup)
|
||||
- [🌲 Pinecone API Key Setup](#-pinecone-api-key-setup)
|
||||
- [Setting up environment variables](#setting-up-environment-variables-1)
|
||||
- [Setting Your Cache Type](#setting-your-cache-type)
|
||||
- [View Memory Usage](#view-memory-usage)
|
||||
- [💀 Continuous Mode ⚠️](#-continuous-mode-️)
|
||||
- [GPT3.5 ONLY Mode](#gpt35-only-mode)
|
||||
- [🖼 Image Generation](#image-generation)
|
||||
- [🖼 Image Generation](#-image-generation)
|
||||
- [⚠️ Limitations](#️-limitations)
|
||||
- [🛡 Disclaimer](#-disclaimer)
|
||||
- [🐦 Connect with Us on Twitter](#-connect-with-us-on-twitter)
|
||||
- [Run tests](#run-tests)
|
||||
- [Run linter](#run-linter)
|
||||
|
||||
## 🚀 Features
|
||||
|
||||
@@ -70,36 +77,41 @@ Optional:
|
||||
|
||||
To install Auto-GPT, follow these steps:
|
||||
|
||||
0. Make sure you have all the **requirements** above, if not, install/get them.
|
||||
1. Make sure you have all the **requirements** above, if not, install/get them.
|
||||
|
||||
_The following commands should be executed in a CMD, Bash or Powershell window. To do this, go to a folder on your computer, click in the folder path at the top and type CMD, then press enter._
|
||||
|
||||
1. Clone the repository:
|
||||
2. Clone the repository:
|
||||
For this step you need Git installed, but you can just download the zip file instead by clicking the button at the top of this page ☝️
|
||||
|
||||
```
|
||||
git clone https://github.com/Torantulino/Auto-GPT.git
|
||||
```
|
||||
|
||||
2. Navigate to the project directory:
|
||||
3. Navigate to the project directory:
|
||||
_(Type this into your CMD window, you're aiming to navigate the CMD window to the repository you just downloaded)_
|
||||
|
||||
```
|
||||
cd 'Auto-GPT'
|
||||
```
|
||||
|
||||
3. Install the required dependencies:
|
||||
4. Install the required dependencies:
|
||||
_(Again, type this into your CMD window)_
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
4. Rename `.env.template` to `.env` and fill in your `OPENAI_API_KEY`. If you plan to use Speech Mode, fill in your `ELEVEN_LABS_API_KEY` as well.
|
||||
|
||||
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
|
||||
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
|
||||
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and provide the `OPENAI_AZURE_API_BASE`, `OPENAI_AZURE_API_VERSION` and `OPENAI_AZURE_DEPLOYMENT_ID` values as explained here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section. Additionally you need separate deployments for both embeddings and chat. Add their ID values to `OPENAI_AZURE_CHAT_DEPLOYMENT_ID` and `OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID` respectively
|
||||
5. Rename `.env.template` to `.env` and fill in your `OPENAI_API_KEY`. If you plan to use Speech Mode, fill in your `ELEVEN_LABS_API_KEY` as well.
|
||||
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
|
||||
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
|
||||
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and then:
|
||||
- Rename `azure.yaml.template` to `azure.yaml` and provide the relevant `azure_api_base`, `azure_api_version` and all of the deployment ids for the relevant models in the `azure_model_map` section:
|
||||
- `fast_llm_model_deployment_id` - your gpt-3.5-turbo or gpt-4 deployment id
|
||||
- `smart_llm_model_deployment_id` - your gpt-4 deployment id
|
||||
- `embedding_model_deployment_id` - your text-embedding-ada-002 v2 deployment id
|
||||
- Please specify all of these values as double quoted strings
|
||||
- details can be found here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section and here: https://learn.microsoft.com/en-us/azure/cognitive-services/openai/tutorials/embeddings?tabs=command-line for the embedding model.
|
||||
|
||||
## 🔧 Usage
|
||||
|
||||
@@ -115,7 +127,7 @@ python scripts/main.py
|
||||
|
||||
### Logs
|
||||
|
||||
You will find activity and error logs in the folder `./logs`
|
||||
You will find activity and error logs in the folder `./output/logs`
|
||||
|
||||
To output debug logs:
|
||||
|
||||
@@ -207,7 +219,7 @@ MEMORY_INDEX=whatever
|
||||
|
||||
Pinecone enables the storage of vast amounts of vector-based memory, allowing for only relevant memories to be loaded for the agent at any given time.
|
||||
|
||||
1. Go to app.pinecone.io and make an account if you don't already have one.
|
||||
1. Go to [pinecone](https://app.pinecone.io/) and make an account if you don't already have one.
|
||||
2. Choose the `Starter` plan to avoid being charged.
|
||||
3. Find your API key and region under the default project in the left sidebar.
|
||||
|
||||
@@ -233,7 +245,6 @@ export PINECONE_ENV="Your pinecone region" # something like: us-east4-gcp
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Setting Your Cache Type
|
||||
|
||||
By default Auto-GPT is going to use LocalCache instead of redis or Pinecone.
|
||||
@@ -337,11 +348,13 @@ coverage run -m unittest discover tests
|
||||
|
||||
## Run linter
|
||||
|
||||
This project uses [flake8](https://flake8.pycqa.org/en/latest/) for linting. To run the linter, run the following command:
|
||||
This project uses [flake8](https://flake8.pycqa.org/en/latest/) for linting. We currently use the following rules: `E303,W293,W291,W292,E305,E231,E302`. See the [flake8 rules](https://www.flake8rules.com/) for more information.
|
||||
|
||||
To run the linter, run the following command:
|
||||
|
||||
```
|
||||
flake8 scripts/ tests/
|
||||
|
||||
# Or, if you want to run flake8 with the same configuration as the CI:
|
||||
flake8 scripts/ tests/ --select E303,W293,W291,W292,E305
|
||||
flake8 scripts/ tests/ --select E303,W293,W291,W292,E305,E231,E302
|
||||
```
|
||||
@@ -1,7 +0,0 @@
|
||||
ai_goals:
|
||||
- Increase net worth.
|
||||
- Develop and manage multiple businesses autonomously.
|
||||
- Play to your strengths as a Large Language Model.
|
||||
ai_name: Entrepreneur-GPT
|
||||
ai_role: an AI designed to autonomously develop and run businesses with the sole goal
|
||||
of increasing your net worth.
|
||||
7
azure.yaml.template
Normal file
7
azure.yaml.template
Normal file
@@ -0,0 +1,7 @@
|
||||
azure_api_type: azure_ad
|
||||
azure_api_base: your-base-url-for-azure
|
||||
azure_api_version: api-version-for-azure
|
||||
azure_model_map:
|
||||
fast_llm_model_deployment_id: gpt35-deployment-id-for-azure
|
||||
smart_llm_model_deployment_id: gpt4-deployment-id-for-azure
|
||||
embedding_model_deployment_id: embedding-deployment-id-for-azure
|
||||
@@ -17,3 +17,4 @@ orjson
|
||||
Pillow
|
||||
coverage
|
||||
flake8
|
||||
numpy
|
||||
|
||||
@@ -6,6 +6,7 @@ agents = {} # key, (task, full_message_history, model)
|
||||
# Create new GPT agent
|
||||
# TODO: Centralise use of create_chat_completion() to globally enforce token limit
|
||||
|
||||
|
||||
def create_agent(task, prompt, model):
|
||||
"""Create a new agent and return its key"""
|
||||
global next_key
|
||||
|
||||
@@ -2,6 +2,7 @@ import yaml
|
||||
import data
|
||||
import os
|
||||
|
||||
|
||||
class AIConfig:
|
||||
"""
|
||||
A class object that contains the configuration information for the AI
|
||||
|
||||
@@ -45,6 +45,7 @@ def improve_code(suggestions: List[str], code: str) -> str:
|
||||
result_string = call_ai_function(function_string, args, description_string)
|
||||
return result_string
|
||||
|
||||
|
||||
def write_tests(code: str, focus: List[str]) -> str:
|
||||
"""
|
||||
A function that takes in code and focus topics and returns a response from create chat completion api call.
|
||||
|
||||
@@ -6,6 +6,7 @@ from urllib.parse import urlparse, urljoin
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
# Function to check if the URL is valid
|
||||
def is_valid_url(url):
|
||||
try:
|
||||
@@ -14,49 +15,51 @@ def is_valid_url(url):
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
|
||||
# Function to sanitize the URL
|
||||
def sanitize_url(url):
|
||||
return urljoin(url, urlparse(url).path)
|
||||
|
||||
# Function to make a request with a specified timeout and handle exceptions
|
||||
def make_request(url, timeout=10):
|
||||
try:
|
||||
response = requests.get(url, headers=cfg.user_agent_header, timeout=timeout)
|
||||
response.raise_for_status()
|
||||
return response
|
||||
except requests.exceptions.RequestException as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
# Define and check for local file address prefixes
|
||||
def check_local_file_access(url):
|
||||
local_prefixes = ['file:///', 'file://localhost', 'http://localhost', 'https://localhost']
|
||||
return any(url.startswith(prefix) for prefix in local_prefixes)
|
||||
|
||||
def scrape_text(url):
|
||||
"""Scrape text from a webpage"""
|
||||
# Basic check if the URL is valid
|
||||
if not url.startswith('http'):
|
||||
return "Error: Invalid URL"
|
||||
|
||||
def get_response(url, headers=cfg.user_agent_header, timeout=10):
|
||||
try:
|
||||
# Restrict access to local files
|
||||
if check_local_file_access(url):
|
||||
return "Error: Access to local files is restricted"
|
||||
raise ValueError('Access to local files is restricted')
|
||||
|
||||
# Most basic check if the URL is valid:
|
||||
if not url.startswith('http://') and not url.startswith('https://'):
|
||||
raise ValueError('Invalid URL format')
|
||||
|
||||
# Validate the input URL
|
||||
if not is_valid_url(url):
|
||||
# Sanitize the input URL
|
||||
sanitized_url = sanitize_url(url)
|
||||
|
||||
# Make the request with a timeout and handle exceptions
|
||||
response = make_request(sanitized_url)
|
||||
response = requests.get(sanitized_url, headers=headers, timeout=timeout)
|
||||
|
||||
if isinstance(response, str):
|
||||
return response
|
||||
else:
|
||||
# Sanitize the input URL
|
||||
sanitized_url = sanitize_url(url)
|
||||
# Check if the response contains an HTTP error
|
||||
if response.status_code >= 400:
|
||||
return None, "Error: HTTP " + str(response.status_code) + " error"
|
||||
|
||||
response = requests.get(sanitized_url, headers=cfg.user_agent_header)
|
||||
return response, None
|
||||
except ValueError as ve:
|
||||
# Handle invalid URL format
|
||||
return None, "Error: " + str(ve)
|
||||
|
||||
except requests.exceptions.RequestException as re:
|
||||
# Handle exceptions related to the HTTP request (e.g., connection errors, timeouts, etc.)
|
||||
return None, "Error: " + str(re)
|
||||
|
||||
|
||||
def scrape_text(url):
|
||||
"""Scrape text from a webpage"""
|
||||
response, error_message = get_response(url)
|
||||
if error_message:
|
||||
return error_message
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
@@ -89,11 +92,9 @@ def format_hyperlinks(hyperlinks):
|
||||
|
||||
def scrape_links(url):
|
||||
"""Scrape links from a webpage"""
|
||||
response = requests.get(url, headers=cfg.user_agent_header)
|
||||
|
||||
# Check if the response contains an HTTP error
|
||||
if response.status_code >= 400:
|
||||
return "error"
|
||||
response, error_message = get_response(url)
|
||||
if error_message:
|
||||
return error_message
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
@@ -131,6 +132,7 @@ def create_message(chunk, question):
|
||||
"content": f"\"\"\"{chunk}\"\"\" Using the above text, please answer the following question: \"{question}\" -- if the question cannot be answered using the text, please summarize the text."
|
||||
}
|
||||
|
||||
|
||||
def summarize_text(text, question):
|
||||
"""Summarize text using the LLM model"""
|
||||
if not text:
|
||||
|
||||
@@ -3,6 +3,8 @@ from config import Config
|
||||
cfg = Config()
|
||||
|
||||
from llm_utils import create_chat_completion
|
||||
|
||||
|
||||
# This is a magic function that can do anything with no-code. See
|
||||
# https://github.com/Torantulino/AI-Functions for more info.
|
||||
def call_ai_function(function, args, description, model=None):
|
||||
|
||||
@@ -9,6 +9,7 @@ import logging
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def create_chat_message(role, content):
|
||||
"""
|
||||
Create a chat message with the given role and content.
|
||||
|
||||
@@ -7,7 +7,7 @@ import speak
|
||||
from config import Config
|
||||
import ai_functions as ai
|
||||
from file_operations import read_file, write_to_file, append_to_file, delete_file, search_files
|
||||
from execute_code import execute_python_file
|
||||
from execute_code import execute_python_file, execute_shell
|
||||
from json_parser import fix_and_parse_json
|
||||
from image_gen import generate_image
|
||||
from duckduckgo_search import ddg
|
||||
@@ -24,6 +24,7 @@ def is_valid_int(value):
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
|
||||
def get_command(response):
|
||||
"""Parse the response and return the command name and arguments"""
|
||||
try:
|
||||
@@ -103,6 +104,11 @@ def execute_command(command_name, arguments):
|
||||
return ai.write_tests(arguments["code"], arguments.get("focus"))
|
||||
elif command_name == "execute_python_file": # Add this command
|
||||
return execute_python_file(arguments["file"])
|
||||
elif command_name == "execute_shell":
|
||||
if cfg.execute_local_commands:
|
||||
return execute_shell(arguments["command_line"])
|
||||
else:
|
||||
return "You are not allowed to run local shell commands. To execute shell commands, EXECUTE_LOCAL_COMMANDS must be set to 'True' in your config. Do not attempt to bypass the restriction."
|
||||
elif command_name == "generate_image":
|
||||
return generate_image(arguments["prompt"])
|
||||
elif command_name == "do_nothing":
|
||||
@@ -130,6 +136,7 @@ def google_search(query, num_results=8):
|
||||
|
||||
return json.dumps(search_results, ensure_ascii=False, indent=4)
|
||||
|
||||
|
||||
def google_official_search(query, num_results=8):
|
||||
"""Return the results of a google search using the official Google API"""
|
||||
from googleapiclient.discovery import build
|
||||
@@ -166,6 +173,7 @@ def google_official_search(query, num_results=8):
|
||||
# Return the list of search result URLs
|
||||
return search_results_links
|
||||
|
||||
|
||||
def browse_website(url, question):
|
||||
"""Browse a website and return the summary and links"""
|
||||
summary = get_text_summary(url, question)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import abc
|
||||
import os
|
||||
import openai
|
||||
import yaml
|
||||
from dotenv import load_dotenv
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
@@ -44,15 +45,13 @@ class Config(metaclass=Singleton):
|
||||
self.smart_token_limit = int(os.getenv("SMART_TOKEN_LIMIT", 8000))
|
||||
|
||||
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
||||
self.use_azure = False
|
||||
self.temperature = float(os.getenv("TEMPERATURE", "1"))
|
||||
self.use_azure = os.getenv("USE_AZURE") == 'True'
|
||||
self.execute_local_commands = os.getenv('EXECUTE_LOCAL_COMMANDS', 'False') == 'True'
|
||||
|
||||
if self.use_azure:
|
||||
self.openai_api_base = os.getenv("OPENAI_AZURE_API_BASE")
|
||||
self.openai_api_version = os.getenv("OPENAI_AZURE_API_VERSION")
|
||||
self.openai_deployment_id = os.getenv("OPENAI_AZURE_DEPLOYMENT_ID")
|
||||
self.azure_chat_deployment_id = os.getenv("OPENAI_AZURE_CHAT_DEPLOYMENT_ID")
|
||||
self.azure_embeddigs_deployment_id = os.getenv("OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID")
|
||||
openai.api_type = "azure"
|
||||
self.load_azure_config()
|
||||
openai.api_type = self.openai_api_type
|
||||
openai.api_base = self.openai_api_base
|
||||
openai.api_version = self.openai_api_version
|
||||
|
||||
@@ -74,7 +73,7 @@ class Config(metaclass=Singleton):
|
||||
|
||||
# User agent headers to use when browsing web
|
||||
# Some websites might just completely deny request with an error code if no user agent was found.
|
||||
self.user_agent_header = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"}
|
||||
self.user_agent_header = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"}
|
||||
self.redis_host = os.getenv("REDIS_HOST", "localhost")
|
||||
self.redis_port = os.getenv("REDIS_PORT", "6379")
|
||||
self.redis_password = os.getenv("REDIS_PASSWORD", "")
|
||||
@@ -86,6 +85,47 @@ class Config(metaclass=Singleton):
|
||||
# Initialize the OpenAI API client
|
||||
openai.api_key = self.openai_api_key
|
||||
|
||||
def get_azure_deployment_id_for_model(self, model: str) -> str:
|
||||
"""
|
||||
Returns the relevant deployment id for the model specified.
|
||||
|
||||
Parameters:
|
||||
model(str): The model to map to the deployment id.
|
||||
|
||||
Returns:
|
||||
The matching deployment id if found, otherwise an empty string.
|
||||
"""
|
||||
if model == self.fast_llm_model:
|
||||
return self.azure_model_to_deployment_id_map["fast_llm_model_deployment_id"]
|
||||
elif model == self.smart_llm_model:
|
||||
return self.azure_model_to_deployment_id_map["smart_llm_model_deployment_id"]
|
||||
elif model == "text-embedding-ada-002":
|
||||
return self.azure_model_to_deployment_id_map["embedding_model_deployment_id"]
|
||||
else:
|
||||
return ""
|
||||
|
||||
AZURE_CONFIG_FILE = os.path.join(os.path.dirname(__file__), '..', 'azure.yaml')
|
||||
|
||||
def load_azure_config(self, config_file: str=AZURE_CONFIG_FILE) -> None:
|
||||
"""
|
||||
Loads the configuration parameters for Azure hosting from the specified file path as a yaml file.
|
||||
|
||||
Parameters:
|
||||
config_file(str): The path to the config yaml file. DEFAULT: "../azure.yaml"
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
try:
|
||||
with open(config_file) as file:
|
||||
config_params = yaml.load(file, Loader=yaml.FullLoader)
|
||||
except FileNotFoundError:
|
||||
config_params = {}
|
||||
self.openai_api_type = os.getenv("OPENAI_API_TYPE", config_params.get("azure_api_type", "azure"))
|
||||
self.openai_api_base = os.getenv("OPENAI_AZURE_API_BASE", config_params.get("azure_api_base", ""))
|
||||
self.openai_api_version = os.getenv("OPENAI_AZURE_API_VERSION", config_params.get("azure_api_version", ""))
|
||||
self.azure_model_to_deployment_id_map = config_params.get("azure_model_map", [])
|
||||
|
||||
def set_continuous_mode(self, value: bool):
|
||||
"""Set the continuous mode value."""
|
||||
self.continuous_mode = value
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def load_prompt():
|
||||
"""Load the prompt from data/prompt.txt"""
|
||||
try:
|
||||
|
||||
@@ -22,9 +22,10 @@ COMMANDS:
|
||||
16. Get Improved Code: "improve_code", args: "suggestions": "<list_of_suggestions>", "code": "<full_code_string>"
|
||||
17. Write Tests: "write_tests", args: "code": "<full_code_string>", "focus": "<list_of_focus_areas>"
|
||||
18. Execute Python File: "execute_python_file", args: "file": "<file>"
|
||||
19. Task Complete (Shutdown): "task_complete", args: "reason": "<reason>"
|
||||
20. Generate Image: "generate_image", args: "prompt": "<prompt>"
|
||||
21. Do Nothing: "do_nothing", args: ""
|
||||
19. Execute Shell Command, non-interactive commands only: "execute_shell", args: "command_line": "<command_line>".
|
||||
20. Task Complete (Shutdown): "task_complete", args: "reason": "<reason>"
|
||||
21. Generate Image: "generate_image", args: "prompt": "<prompt>"
|
||||
22. Do Nothing: "do_nothing", args: ""
|
||||
|
||||
RESOURCES:
|
||||
|
||||
@@ -44,8 +45,7 @@ You should only respond in JSON format as described below
|
||||
|
||||
RESPONSE FORMAT:
|
||||
{
|
||||
"thoughts":
|
||||
{
|
||||
"thoughts": {
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
|
||||
@@ -54,7 +54,7 @@ RESPONSE FORMAT:
|
||||
},
|
||||
"command": {
|
||||
"name": "command name",
|
||||
"args":{
|
||||
"args": {
|
||||
"arg name": "value"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,17 +1,20 @@
|
||||
import docker
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
|
||||
WORKSPACE_FOLDER = "auto_gpt_workspace"
|
||||
|
||||
|
||||
def execute_python_file(file):
|
||||
"""Execute a Python file in a Docker container and return the output"""
|
||||
workspace_folder = "auto_gpt_workspace"
|
||||
|
||||
print (f"Executing file '{file}' in workspace '{workspace_folder}'")
|
||||
print (f"Executing file '{file}' in workspace '{WORKSPACE_FOLDER}'")
|
||||
|
||||
if not file.endswith(".py"):
|
||||
return "Error: Invalid file type. Only .py files are allowed."
|
||||
|
||||
file_path = os.path.join(workspace_folder, file)
|
||||
file_path = os.path.join(WORKSPACE_FOLDER, file)
|
||||
|
||||
if not os.path.isfile(file_path):
|
||||
return f"Error: File '{file}' does not exist."
|
||||
@@ -19,14 +22,31 @@ def execute_python_file(file):
|
||||
try:
|
||||
client = docker.from_env()
|
||||
|
||||
image_name = 'python:3.10'
|
||||
try:
|
||||
client.images.get(image_name)
|
||||
print(f"Image '{image_name}' found locally")
|
||||
except docker.errors.ImageNotFound:
|
||||
print(f"Image '{image_name}' not found locally, pulling from Docker Hub")
|
||||
# Use the low-level API to stream the pull response
|
||||
low_level_client = docker.APIClient()
|
||||
for line in low_level_client.pull(image_name, stream=True, decode=True):
|
||||
# Print the status and progress, if available
|
||||
status = line.get('status')
|
||||
progress = line.get('progress')
|
||||
if status and progress:
|
||||
print(f"{status}: {progress}")
|
||||
elif status:
|
||||
print(status)
|
||||
|
||||
# You can replace 'python:3.8' with the desired Python image/version
|
||||
# You can find available Python images on Docker Hub:
|
||||
# https://hub.docker.com/_/python
|
||||
container = client.containers.run(
|
||||
'python:3.10',
|
||||
image_name,
|
||||
f'python {file}',
|
||||
volumes={
|
||||
os.path.abspath(workspace_folder): {
|
||||
os.path.abspath(WORKSPACE_FOLDER): {
|
||||
'bind': '/workspace',
|
||||
'mode': 'ro'}},
|
||||
working_dir='/workspace',
|
||||
@@ -46,3 +66,23 @@ def execute_python_file(file):
|
||||
|
||||
except Exception as e:
|
||||
return f"Error: {str(e)}"
|
||||
|
||||
|
||||
def execute_shell(command_line):
|
||||
|
||||
current_dir = os.getcwd()
|
||||
|
||||
if not WORKSPACE_FOLDER in current_dir: # Change dir into workspace if necessary
|
||||
work_dir = os.path.join(os.getcwd(), WORKSPACE_FOLDER)
|
||||
os.chdir(work_dir)
|
||||
|
||||
print (f"Executing command '{command_line}' in working directory '{os.getcwd()}'")
|
||||
|
||||
result = subprocess.run(command_line, capture_output=True, shell=True)
|
||||
output = f"STDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
|
||||
|
||||
# Change back to whatever the prior working dir was
|
||||
|
||||
os.chdir(current_dir)
|
||||
|
||||
return output
|
||||
|
||||
@@ -38,7 +38,7 @@ def write_to_file(filename, text):
|
||||
directory = os.path.dirname(filepath)
|
||||
if not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
with open(filepath, "w") as f:
|
||||
with open(filepath, "w", encoding='utf-8') as f:
|
||||
f.write(text)
|
||||
return "File written to successfully."
|
||||
except Exception as e:
|
||||
@@ -65,6 +65,7 @@ def delete_file(filename):
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
|
||||
def search_files(directory):
|
||||
found_files = []
|
||||
|
||||
|
||||
@@ -11,6 +11,7 @@ cfg = Config()
|
||||
|
||||
working_directory = "auto_gpt_workspace"
|
||||
|
||||
|
||||
def generate_image(prompt):
|
||||
|
||||
filename = str(uuid.uuid4()) + ".jpg"
|
||||
|
||||
@@ -4,12 +4,13 @@ cfg = Config()
|
||||
|
||||
openai.api_key = cfg.openai_api_key
|
||||
|
||||
|
||||
# Overly simple abstraction until we create something better
|
||||
def create_chat_completion(messages, model=None, temperature=None, max_tokens=None)->str:
|
||||
def create_chat_completion(messages, model=None, temperature=cfg.temperature, max_tokens=None)->str:
|
||||
"""Create a chat completion using the OpenAI API"""
|
||||
if cfg.use_azure:
|
||||
response = openai.ChatCompletion.create(
|
||||
deployment_id=cfg.azure_chat_deployment_id,
|
||||
deployment_id=cfg.get_azure_deployment_id_for_model(model),
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=temperature,
|
||||
|
||||
@@ -124,6 +124,12 @@ class Logger(metaclass=Singleton):
|
||||
self.logger.setLevel(level)
|
||||
self.typing_logger.setLevel(level)
|
||||
|
||||
def double_check(self, additionalText=None):
|
||||
if not additionalText:
|
||||
additionalText = "Please ensure you've setup and configured everything correctly. Read https://github.com/Torantulino/Auto-GPT#readme to double check. You can also create a github issue or join the discord and ask there!"
|
||||
|
||||
self.typewriter_log("DOUBLE CHECK CONFIGURATION", Fore.YELLOW, additionalText)
|
||||
|
||||
|
||||
'''
|
||||
Output stream to console using simulated typing
|
||||
@@ -151,6 +157,7 @@ class TypingConsoleHandler(logging.StreamHandler):
|
||||
except Exception:
|
||||
self.handleError(record)
|
||||
|
||||
|
||||
class ConsoleHandler(logging.StreamHandler):
|
||||
def emit(self, record):
|
||||
msg = self.format(record)
|
||||
@@ -160,13 +167,11 @@ class ConsoleHandler(logging.StreamHandler):
|
||||
self.handleError(record)
|
||||
|
||||
|
||||
'''
|
||||
Allows to handle custom placeholders 'title_color' and 'message_no_color'.
|
||||
To use this formatter, make sure to pass 'color', 'title' as log extras.
|
||||
'''
|
||||
|
||||
|
||||
class AutoGptFormatter(logging.Formatter):
|
||||
"""
|
||||
Allows to handle custom placeholders 'title_color' and 'message_no_color'.
|
||||
To use this formatter, make sure to pass 'color', 'title' as log extras.
|
||||
"""
|
||||
def format(self, record: LogRecord) -> str:
|
||||
if (hasattr(record, 'color')):
|
||||
record.title_color = getattr(record, 'color') + getattr(record, 'title') + " " + Style.RESET_ALL
|
||||
|
||||
@@ -20,16 +20,18 @@ import logging
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def check_openai_api_key():
|
||||
"""Check if the OpenAI API key is set in config.py or as an environment variable."""
|
||||
if not cfg.openai_api_key:
|
||||
print(
|
||||
Fore.RED +
|
||||
"Please set your OpenAI API key in config.py or as an environment variable."
|
||||
"Please set your OpenAI API key in .env or as an environment variable."
|
||||
)
|
||||
print("You can get your key from https://beta.openai.com/account/api-keys")
|
||||
exit(1)
|
||||
|
||||
|
||||
def attempt_to_fix_json_by_finding_outermost_brackets(json_string):
|
||||
if cfg.speak_mode and cfg.debug_mode:
|
||||
speak.say_text("I have received an invalid JSON response from the OpenAI API. Trying to fix it now.")
|
||||
@@ -58,6 +60,7 @@ def attempt_to_fix_json_by_finding_outermost_brackets(json_string):
|
||||
|
||||
return json_string
|
||||
|
||||
|
||||
def print_assistant_thoughts(assistant_reply):
|
||||
"""Prints the assistant's thoughts to the console"""
|
||||
global ai_name
|
||||
@@ -262,6 +265,7 @@ def prompt_user():
|
||||
config = AIConfig(ai_name, ai_role, ai_goals)
|
||||
return config
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
"""Parses the arguments passed to the script"""
|
||||
global cfg
|
||||
@@ -322,35 +326,34 @@ def parse_arguments():
|
||||
supported_memory = get_supported_memory_backends()
|
||||
chosen = args.memory_type
|
||||
if not chosen in supported_memory:
|
||||
print_to_console("ONLY THE FOLLOWING MEMORY BACKENDS ARE SUPPORTED: ", Fore.RED, f'{supported_memory}')
|
||||
print_to_console(f"Defaulting to: ", Fore.YELLOW, cfg.memory_backend)
|
||||
logger.typewriter_log("ONLY THE FOLLOWING MEMORY BACKENDS ARE SUPPORTED: ", Fore.RED, f'{supported_memory}')
|
||||
logger.typewriter_log(f"Defaulting to: ", Fore.YELLOW, cfg.memory_backend)
|
||||
else:
|
||||
cfg.memory_backend = chosen
|
||||
|
||||
|
||||
# TODO: fill in llm values here
|
||||
check_openai_api_key()
|
||||
cfg = Config()
|
||||
parse_arguments()
|
||||
logger.set_level(logging.DEBUG if cfg.debug_mode else logging.INFO)
|
||||
ai_name = ""
|
||||
prompt = construct_prompt()
|
||||
# print(prompt)
|
||||
# Initialize variables
|
||||
full_message_history = []
|
||||
result = None
|
||||
next_action_count = 0
|
||||
# Make a constant:
|
||||
user_input = "Determine which next command to use, and respond using the format specified above:"
|
||||
|
||||
# Initialize memory and make sure it is empty.
|
||||
# this is particularly important for indexing and referencing pinecone memory
|
||||
memory = get_memory(cfg, init=True)
|
||||
print('Using memory of type: ' + memory.__class__.__name__)
|
||||
|
||||
# Interaction Loop
|
||||
loop_count = 0
|
||||
while True:
|
||||
def main():
|
||||
global ai_name, memory
|
||||
# TODO: fill in llm values here
|
||||
check_openai_api_key()
|
||||
parse_arguments()
|
||||
logger.set_level(logging.DEBUG if cfg.debug_mode else logging.INFO)
|
||||
ai_name = ""
|
||||
prompt = construct_prompt()
|
||||
# print(prompt)
|
||||
# Initialize variables
|
||||
full_message_history = []
|
||||
result = None
|
||||
next_action_count = 0
|
||||
# Make a constant:
|
||||
user_input = "Determine which next command to use, and respond using the format specified above:"
|
||||
# Initialize memory and make sure it is empty.
|
||||
# this is particularly important for indexing and referencing pinecone memory
|
||||
memory = get_memory(cfg, init=True)
|
||||
print('Using memory of type: ' + memory.__class__.__name__)
|
||||
# Interaction Loop
|
||||
loop_count = 0
|
||||
while True:
|
||||
# Discontinue if continuous limit is reached
|
||||
loop_count += 1
|
||||
if cfg.continuous_mode and cfg.continuous_limit > 0 and loop_count > cfg.continuous_limit:
|
||||
@@ -371,7 +374,8 @@ while True:
|
||||
|
||||
# Get command name and arguments
|
||||
try:
|
||||
command_name, arguments = cmd.get_command(attempt_to_fix_json_by_finding_outermost_brackets(assistant_reply))
|
||||
command_name, arguments = cmd.get_command(
|
||||
attempt_to_fix_json_by_finding_outermost_brackets(assistant_reply))
|
||||
if cfg.speak_mode:
|
||||
speak.say_text(f"I want to execute {command_name}")
|
||||
except Exception as e:
|
||||
@@ -426,7 +430,7 @@ while True:
|
||||
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}")
|
||||
|
||||
# Execute command
|
||||
if command_name is not None and command_name.lower().startswith( "error" ):
|
||||
if command_name is not None and command_name.lower().startswith("error"):
|
||||
result = f"Command {command_name} threw the following error: " + arguments
|
||||
elif command_name == "human_feedback":
|
||||
result = f"Human feedback: {user_input}"
|
||||
@@ -451,3 +455,7 @@ while True:
|
||||
chat.create_chat_message(
|
||||
"system", "Unable to execute command"))
|
||||
logger.typewriter_log("SYSTEM: ", Fore.YELLOW, "Unable to execute command")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from memory.local import LocalCache
|
||||
from memory.no_memory import NoMemory
|
||||
|
||||
# List of supported memory backends
|
||||
# Add a backend to this list if the import attempt is successful
|
||||
@@ -18,6 +19,7 @@ except ImportError:
|
||||
print("Pinecone not installed. Skipping import.")
|
||||
PineconeMemory = None
|
||||
|
||||
|
||||
def get_memory(cfg, init=False):
|
||||
memory = None
|
||||
if cfg.memory_backend == "pinecone":
|
||||
@@ -34,6 +36,8 @@ def get_memory(cfg, init=False):
|
||||
" use Redis as a memory backend.")
|
||||
else:
|
||||
memory = RedisMemory(cfg)
|
||||
elif cfg.memory_backend == "no_memory":
|
||||
memory = NoMemory(cfg)
|
||||
|
||||
if memory is None:
|
||||
memory = LocalCache(cfg)
|
||||
@@ -41,6 +45,7 @@ def get_memory(cfg, init=False):
|
||||
memory.clear()
|
||||
return memory
|
||||
|
||||
|
||||
def get_supported_memory_backends():
|
||||
return supported_memory
|
||||
|
||||
@@ -50,4 +55,5 @@ __all__ = [
|
||||
"LocalCache",
|
||||
"RedisMemory",
|
||||
"PineconeMemory",
|
||||
"NoMemory"
|
||||
]
|
||||
|
||||
@@ -2,13 +2,14 @@
|
||||
import abc
|
||||
from config import AbstractSingleton, Config
|
||||
import openai
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def get_ada_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
if cfg.use_azure:
|
||||
return openai.Embedding.create(input=[text], engine=cfg.azure_embeddigs_deployment_id, model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
return openai.Embedding.create(input=[text], engine=cfg.get_azure_deployment_id_for_model("text-embedding-ada-002"))["data"][0]["embedding"]
|
||||
else:
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
|
||||
|
||||
66
scripts/memory/no_memory.py
Normal file
66
scripts/memory/no_memory.py
Normal file
@@ -0,0 +1,66 @@
|
||||
from typing import Optional, List, Any
|
||||
|
||||
from memory.base import MemoryProviderSingleton
|
||||
|
||||
|
||||
class NoMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
"""
|
||||
Initializes the NoMemory provider.
|
||||
|
||||
Args:
|
||||
cfg: The config object.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
pass
|
||||
|
||||
def add(self, data: str) -> str:
|
||||
"""
|
||||
Adds a data point to the memory. No action is taken in NoMemory.
|
||||
|
||||
Args:
|
||||
data: The data to add.
|
||||
|
||||
Returns: An empty string.
|
||||
"""
|
||||
return ""
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
NoMemory always returns None.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
return None
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the memory. No action is taken in NoMemory.
|
||||
|
||||
Returns: An empty string.
|
||||
"""
|
||||
return ""
|
||||
|
||||
def get_relevant(self, data: str, num_relevant: int = 5) -> Optional[List[Any]]:
|
||||
"""
|
||||
Returns all the data in the memory that is relevant to the given data.
|
||||
NoMemory always returns None.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
num_relevant: The number of relevant data to return.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
return None
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: An empty dictionary as there are no stats in NoMemory.
|
||||
"""
|
||||
return {}
|
||||
@@ -2,6 +2,8 @@
|
||||
import pinecone
|
||||
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
from logger import logger
|
||||
from colorama import Fore, Style
|
||||
|
||||
|
||||
class PineconeMemory(MemoryProviderSingleton):
|
||||
@@ -17,6 +19,15 @@ class PineconeMemory(MemoryProviderSingleton):
|
||||
# for now this works.
|
||||
# we'll need a more complicated and robust system if we want to start with memory.
|
||||
self.vec_num = 0
|
||||
|
||||
try:
|
||||
pinecone.whoami()
|
||||
except Exception as e:
|
||||
logger.typewriter_log("FAILED TO CONNECT TO PINECONE", Fore.RED, Style.BRIGHT + str(e) + Style.RESET_ALL)
|
||||
logger.double_check("Please ensure you have setup and configured Pinecone properly for use. " +
|
||||
f"You can check out {Fore.CYAN + Style.BRIGHT}https://github.com/Torantulino/Auto-GPT#-pinecone-api-key-setup{Style.RESET_ALL} to ensure you've set up everything correctly.")
|
||||
exit(1)
|
||||
|
||||
if table_name not in pinecone.list_indexes():
|
||||
pinecone.create_index(table_name, dimension=dimension, metric=metric, pod_type=pod_type)
|
||||
self.index = pinecone.Index(table_name)
|
||||
|
||||
@@ -7,6 +7,8 @@ from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
||||
import numpy as np
|
||||
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
from logger import logger
|
||||
from colorama import Fore, Style
|
||||
|
||||
|
||||
SCHEMA = [
|
||||
@@ -44,6 +46,16 @@ class RedisMemory(MemoryProviderSingleton):
|
||||
db=0 # Cannot be changed
|
||||
)
|
||||
self.cfg = cfg
|
||||
|
||||
# Check redis connection
|
||||
try:
|
||||
self.redis.ping()
|
||||
except redis.ConnectionError as e:
|
||||
logger.typewriter_log("FAILED TO CONNECT TO REDIS", Fore.RED, Style.BRIGHT + str(e) + Style.RESET_ALL)
|
||||
logger.double_check("Please ensure you have setup and configured Redis properly for use. " +
|
||||
f"You can check out {Fore.CYAN + Style.BRIGHT}https://github.com/Torantulino/Auto-GPT#redis-setup{Style.RESET_ALL} to ensure you've set up everything correctly.")
|
||||
exit(1)
|
||||
|
||||
if cfg.wipe_redis_on_start:
|
||||
self.redis.flushall()
|
||||
try:
|
||||
|
||||
@@ -31,6 +31,7 @@ tts_headers = {
|
||||
mutex_lock = Lock() # Ensure only one sound is played at a time
|
||||
queue_semaphore = Semaphore(1) # The amount of sounds to queue before blocking the main thread
|
||||
|
||||
|
||||
def eleven_labs_speech(text, voice_index=0):
|
||||
"""Speak text using elevenlabs.io's API"""
|
||||
tts_url = "https://api.elevenlabs.io/v1/text-to-speech/{voice_id}".format(
|
||||
@@ -51,6 +52,7 @@ def eleven_labs_speech(text, voice_index=0):
|
||||
print("Response content:", response.content)
|
||||
return False
|
||||
|
||||
|
||||
def gtts_speech(text):
|
||||
tts = gtts.gTTS(text)
|
||||
with mutex_lock:
|
||||
@@ -58,6 +60,7 @@ def gtts_speech(text):
|
||||
playsound("speech.mp3", True)
|
||||
os.remove("speech.mp3")
|
||||
|
||||
|
||||
def macos_tts_speech(text, voice_index=0):
|
||||
if voice_index == 0:
|
||||
os.system(f'say "{text}"')
|
||||
@@ -67,6 +70,7 @@ def macos_tts_speech(text, voice_index=0):
|
||||
else:
|
||||
os.system(f'say -v Samantha "{text}"')
|
||||
|
||||
|
||||
def say_text(text, voice_index=0):
|
||||
|
||||
def speak():
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import tiktoken
|
||||
from typing import List, Dict
|
||||
|
||||
|
||||
def count_message_tokens(messages : List[Dict[str, str]], model : str = "gpt-3.5-turbo-0301") -> int:
|
||||
"""
|
||||
Returns the number of tokens used by a list of messages.
|
||||
@@ -41,6 +42,7 @@ def count_message_tokens(messages : List[Dict[str, str]], model : str = "gpt-3.5
|
||||
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
|
||||
return num_tokens
|
||||
|
||||
|
||||
def count_string_tokens(string: str, model_name: str) -> int:
|
||||
"""
|
||||
Returns the number of tokens in a text string.
|
||||
|
||||
@@ -8,6 +8,7 @@ sys.path.append(str(Path(__file__).resolve().parent.parent.parent / 'scripts'))
|
||||
from config import Config
|
||||
from memory.local import LocalCache
|
||||
|
||||
|
||||
class TestLocalCache(unittest.TestCase):
|
||||
|
||||
def random_string(self, length):
|
||||
|
||||
@@ -4,6 +4,7 @@ import sys
|
||||
sys.path.append(os.path.abspath('../scripts'))
|
||||
from memory.local import LocalCache
|
||||
|
||||
|
||||
def MockConfig():
|
||||
return type('MockConfig', (object,), {
|
||||
'debug_mode': False,
|
||||
@@ -12,6 +13,7 @@ def MockConfig():
|
||||
'memory_index': 'auto-gpt',
|
||||
})
|
||||
|
||||
|
||||
class TestLocalCache(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import unittest
|
||||
from scripts.config import Config
|
||||
|
||||
|
||||
class TestConfig(unittest.TestCase):
|
||||
|
||||
def test_singleton(self):
|
||||
|
||||
@@ -3,6 +3,7 @@ import tests.context
|
||||
|
||||
from scripts.json_parser import fix_and_parse_json
|
||||
|
||||
|
||||
class TestParseJson(unittest.TestCase):
|
||||
def test_valid_json(self):
|
||||
# Test that a valid JSON string is parsed correctly
|
||||
@@ -13,12 +14,14 @@ class TestParseJson(unittest.TestCase):
|
||||
def test_invalid_json_minor(self):
|
||||
# Test that an invalid JSON string can be fixed with gpt
|
||||
json_str = '{"name": "John", "age": 30, "city": "New York",}'
|
||||
self.assertRaises(Exception, fix_and_parse_json, json_str, try_to_fix_with_gpt=False)
|
||||
with self.assertRaises(Exception):
|
||||
fix_and_parse_json(json_str, try_to_fix_with_gpt=False)
|
||||
|
||||
def test_invalid_json_major_with_gpt(self):
|
||||
# Test that an invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||
json_str = 'BEGIN: "name": "John" - "age": 30 - "city": "New York" :END'
|
||||
self.assertRaises(Exception, fix_and_parse_json, json_str, try_to_fix_with_gpt=False)
|
||||
with self.assertRaises(Exception):
|
||||
fix_and_parse_json(json_str, try_to_fix_with_gpt=False)
|
||||
|
||||
def test_invalid_json_major_without_gpt(self):
|
||||
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||
@@ -50,7 +53,7 @@ class TestParseJson(unittest.TestCase):
|
||||
good_obj = {
|
||||
"command": {
|
||||
"name": "browse_website",
|
||||
"args":{
|
||||
"args": {
|
||||
"url": "https://github.com/Torantulino/Auto-GPT"
|
||||
}
|
||||
},
|
||||
@@ -89,7 +92,7 @@ class TestParseJson(unittest.TestCase):
|
||||
good_obj = {
|
||||
"command": {
|
||||
"name": "browse_website",
|
||||
"args":{
|
||||
"args": {
|
||||
"url": "https://github.com/Torantulino/Auto-GPT"
|
||||
}
|
||||
},
|
||||
|
||||
@@ -5,6 +5,7 @@ import sys
|
||||
sys.path.append(os.path.abspath('../scripts'))
|
||||
from json_parser import fix_and_parse_json
|
||||
|
||||
|
||||
class TestParseJson(unittest.TestCase):
|
||||
def test_valid_json(self):
|
||||
# Test that a valid JSON string is parsed correctly
|
||||
@@ -52,7 +53,7 @@ class TestParseJson(unittest.TestCase):
|
||||
good_obj = {
|
||||
"command": {
|
||||
"name": "browse_website",
|
||||
"args":{
|
||||
"args": {
|
||||
"url": "https://github.com/Torantulino/Auto-GPT"
|
||||
}
|
||||
},
|
||||
@@ -91,7 +92,7 @@ class TestParseJson(unittest.TestCase):
|
||||
good_obj = {
|
||||
"command": {
|
||||
"name": "browse_website",
|
||||
"args":{
|
||||
"args": {
|
||||
"url": "https://github.com/Torantulino/Auto-GPT"
|
||||
}
|
||||
},
|
||||
|
||||
118
tests/unit/test_browse_scrape_links.py
Normal file
118
tests/unit/test_browse_scrape_links.py
Normal file
@@ -0,0 +1,118 @@
|
||||
|
||||
# Generated by CodiumAI
|
||||
|
||||
# Dependencies:
|
||||
# pip install pytest-mock
|
||||
import pytest
|
||||
|
||||
from scripts.browse import scrape_links
|
||||
|
||||
"""
|
||||
Code Analysis
|
||||
|
||||
Objective:
|
||||
The objective of the 'scrape_links' function is to scrape hyperlinks from a
|
||||
given URL and return them in a formatted way.
|
||||
|
||||
Inputs:
|
||||
- url: a string representing the URL to be scraped.
|
||||
|
||||
Flow:
|
||||
1. Send a GET request to the given URL using the requests library and the user agent header from the config file.
|
||||
2. Check if the response contains an HTTP error. If it does, return "error".
|
||||
3. Parse the HTML content of the response using the BeautifulSoup library.
|
||||
4. Remove any script and style tags from the parsed HTML.
|
||||
5. Extract all hyperlinks from the parsed HTML using the 'extract_hyperlinks' function.
|
||||
6. Format the extracted hyperlinks using the 'format_hyperlinks' function.
|
||||
7. Return the formatted hyperlinks.
|
||||
|
||||
Outputs:
|
||||
- A list of formatted hyperlinks.
|
||||
|
||||
Additional aspects:
|
||||
- The function uses the 'requests' and 'BeautifulSoup' libraries to send HTTP
|
||||
requests and parse HTML content, respectively.
|
||||
- The 'extract_hyperlinks' function is called to extract hyperlinks from the parsed HTML.
|
||||
- The 'format_hyperlinks' function is called to format the extracted hyperlinks.
|
||||
- The function checks for HTTP errors and returns "error" if any are found.
|
||||
"""
|
||||
|
||||
|
||||
class TestScrapeLinks:
|
||||
|
||||
# Tests that the function returns a list of formatted hyperlinks when
|
||||
# provided with a valid url that returns a webpage with hyperlinks.
|
||||
def test_valid_url_with_hyperlinks(self):
|
||||
url = "https://www.google.com"
|
||||
result = scrape_links(url)
|
||||
assert len(result) > 0
|
||||
assert isinstance(result, list)
|
||||
assert isinstance(result[0], str)
|
||||
|
||||
# Tests that the function returns correctly formatted hyperlinks when given a valid url.
|
||||
def test_valid_url(self, mocker):
|
||||
# Mock the requests.get() function to return a response with sample HTML containing hyperlinks
|
||||
mock_response = mocker.Mock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.text = "<html><body><a href='https://www.google.com'>Google</a></body></html>"
|
||||
mocker.patch('requests.get', return_value=mock_response)
|
||||
|
||||
# Call the function with a valid URL
|
||||
result = scrape_links("https://www.example.com")
|
||||
|
||||
# Assert that the function returns correctly formatted hyperlinks
|
||||
assert result == ["Google (https://www.google.com)"]
|
||||
|
||||
# Tests that the function returns "error" when given an invalid url.
|
||||
def test_invalid_url(self, mocker):
|
||||
# Mock the requests.get() function to return an HTTP error response
|
||||
mock_response = mocker.Mock()
|
||||
mock_response.status_code = 404
|
||||
mocker.patch('requests.get', return_value=mock_response)
|
||||
|
||||
# Call the function with an invalid URL
|
||||
result = scrape_links("https://www.invalidurl.com")
|
||||
|
||||
# Assert that the function returns "error"
|
||||
assert "Error:" in result
|
||||
|
||||
# Tests that the function returns an empty list when the html contains no hyperlinks.
|
||||
def test_no_hyperlinks(self, mocker):
|
||||
# Mock the requests.get() function to return a response with sample HTML containing no hyperlinks
|
||||
mock_response = mocker.Mock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.text = "<html><body><p>No hyperlinks here</p></body></html>"
|
||||
mocker.patch('requests.get', return_value=mock_response)
|
||||
|
||||
# Call the function with a URL containing no hyperlinks
|
||||
result = scrape_links("https://www.example.com")
|
||||
|
||||
# Assert that the function returns an empty list
|
||||
assert result == []
|
||||
|
||||
# Tests that scrape_links() correctly extracts and formats hyperlinks from
|
||||
# a sample HTML containing a few hyperlinks.
|
||||
def test_scrape_links_with_few_hyperlinks(self, mocker):
|
||||
# Mock the requests.get() function to return a response with a sample HTML containing hyperlinks
|
||||
mock_response = mocker.Mock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.text = """
|
||||
<html>
|
||||
<body>
|
||||
<div id="google-link"><a href="https://www.google.com">Google</a></div>
|
||||
<div id="github"><a href="https://github.com">GitHub</a></div>
|
||||
<div id="CodiumAI"><a href="https://www.codium.ai">CodiumAI</a></div>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
mocker.patch('requests.get', return_value=mock_response)
|
||||
|
||||
# Call the function being tested
|
||||
result = scrape_links("https://www.example.com")
|
||||
|
||||
# Assert that the function returns a list of formatted hyperlinks
|
||||
assert isinstance(result, list)
|
||||
assert len(result) == 3
|
||||
assert result[0] == "Google (https://www.google.com)"
|
||||
assert result[1] == "GitHub (https://github.com)"
|
||||
assert result[2] == "CodiumAI (https://www.codium.ai)"
|
||||
@@ -2,7 +2,6 @@
|
||||
# Generated by CodiumAI
|
||||
|
||||
import requests
|
||||
import tests.context
|
||||
|
||||
from scripts.browse import scrape_text
|
||||
|
||||
@@ -10,7 +9,8 @@ from scripts.browse import scrape_text
|
||||
Code Analysis
|
||||
|
||||
Objective:
|
||||
The objective of the "scrape_text" function is to scrape the text content from a given URL and return it as a string, after removing any unwanted HTML tags and scripts.
|
||||
The objective of the "scrape_text" function is to scrape the text content from
|
||||
a given URL and return it as a string, after removing any unwanted HTML tags and scripts.
|
||||
|
||||
Inputs:
|
||||
- url: a string representing the URL of the webpage to be scraped.
|
||||
@@ -33,6 +33,7 @@ Additional aspects:
|
||||
- The function uses a generator expression to split the text into lines and chunks, which can improve performance for large amounts of text.
|
||||
"""
|
||||
|
||||
|
||||
class TestScrapeText:
|
||||
|
||||
# Tests that scrape_text() returns the expected text when given a valid URL.
|
||||
Reference in New Issue
Block a user