Merge branch 'Torantulino:master' into kinance-resolve-debug-config-conflict

This commit is contained in:
kinance
2023-04-10 23:08:25 +09:00
committed by GitHub
6 changed files with 95 additions and 21 deletions

View File

@@ -3,9 +3,27 @@ import data
import os
class AIConfig:
"""Class to store the AI's name, role, and goals."""
def __init__(self, ai_name="", ai_role="", ai_goals=[]):
"""Initialize the AIConfig class"""
"""
A class object that contains the configuration information for the AI
Attributes:
ai_name (str): The name of the AI.
ai_role (str): The description of the AI's role.
ai_goals (list): The list of objectives the AI is supposed to complete.
"""
def __init__(self, ai_name: str="", ai_role: str="", ai_goals: list=[]) -> None:
"""
Initialize a class instance
Parameters:
ai_name (str): The name of the AI.
ai_role (str): The description of the AI's role.
ai_goals (list): The list of objectives the AI is supposed to complete.
Returns:
None
"""
self.ai_name = ai_name
self.ai_role = ai_role
self.ai_goals = ai_goals
@@ -14,8 +32,19 @@ class AIConfig:
SAVE_FILE = os.path.join(os.path.dirname(__file__), '..', 'ai_settings.yaml')
@classmethod
def load(cls, config_file=SAVE_FILE):
"""Load variables from yaml file if it exists, otherwise use defaults."""
def load(cls: object, config_file: str=SAVE_FILE) -> object:
"""
Returns class object with parameters (ai_name, ai_role, ai_goals) loaded from yaml file if yaml file exists,
else returns class with no parameters.
Parameters:
cls (class object): An AIConfig Class object.
config_file (int): The path to the config yaml file. DEFAULT: "../ai_settings.yaml"
Returns:
cls (object): A instance of given cls object
"""
try:
with open(config_file) as file:
config_params = yaml.load(file, Loader=yaml.FullLoader)
@@ -28,15 +57,32 @@ class AIConfig:
return cls(ai_name, ai_role, ai_goals)
def save(self, config_file=SAVE_FILE):
"""Save variables to yaml file."""
def save(self, config_file: str=SAVE_FILE) -> None:
"""
Saves the class parameters to the specified file yaml file path as a yaml file.
Parameters:
config_file(str): The path to the config yaml file. DEFAULT: "../ai_settings.yaml"
Returns:
None
"""
config = {"ai_name": self.ai_name, "ai_role": self.ai_role, "ai_goals": self.ai_goals}
with open(config_file, "w") as file:
yaml.dump(config, file)
def construct_full_prompt(self) -> str:
"""
Returns a prompt to the user with the class information in an organized fashion.
Parameters:
None
Returns:
full_prompt (str): A string containing the intitial prompt for the user including the ai_name, ai_role and ai_goals.
"""
def construct_full_prompt(self):
"""Construct the full prompt for the AI to use."""
prompt_start = """Your decisions must always be made independently without seeking user assistance. Play to your strengths as an LLM and pursue simple strategies with no legal complications."""
# Construct full prompt
@@ -46,3 +92,4 @@ class AIConfig:
full_prompt += f"\n\n{data.load_prompt()}"
return full_prompt

View File

@@ -5,9 +5,17 @@ from call_ai_function import call_ai_function
from json_parser import fix_and_parse_json
cfg = Config()
# Evaluating code
def evaluate_code(code: str) -> List[str]:
"""Evaluates the given code and returns a list of suggestions for improvements."""
"""
A function that takes in a string and returns a response from create chat completion api call.
Parameters:
code (str): Code to be evaluated.
Returns:
A result string from create chat completion. A list of suggestions to improve the code.
"""
function_string = "def analyze_code(code: str) -> List[str]:"
args = [code]
description_string = """Analyzes the given code and returns a list of suggestions for improvements."""
@@ -17,9 +25,17 @@ def evaluate_code(code: str) -> List[str]:
return result_string
# Improving code
def improve_code(suggestions: List[str], code: str) -> str:
"""Improves the provided code based on the suggestions provided, making no other changes."""
"""
A function that takes in code and suggestions and returns a response from create chat completion api call.
Parameters:
suggestions (List): A list of suggestions around what needs to be improved.
code (str): Code to be improved.
Returns:
A result string from create chat completion. Improved code in response.
"""
function_string = (
"def generate_improved_code(suggestions: List[str], code: str) -> str:"
)
@@ -30,9 +46,18 @@ def improve_code(suggestions: List[str], code: str) -> str:
return result_string
# Writing tests
def write_tests(code: str, focus: List[str]) -> str:
"""Generates test cases for the existing code, focusing on specific areas if required."""
"""
A function that takes in code and focus topics and returns a response from create chat completion api call.
Parameters:
focus (List): A list of suggestions around what needs to be improved.
code (str): Code for test cases to be generated against.
Returns:
A result string from create chat completion. Test cases for the submitted code in response.
"""
function_string = (
"def create_test_cases(code: str, focus: Optional[str] = None) -> str:"
)
@@ -41,5 +66,3 @@ def write_tests(code: str, focus: List[str]) -> str:
result_string = call_ai_function(function_string, args, description_string)
return result_string

View File

@@ -64,14 +64,14 @@ def chat_with_ai(
model = cfg.fast_llm_model # TODO: Change model from hardcode to argument
# Reserve 1000 tokens for the response
if cfg.debug_mode:
if cfg.debug:
print(f"Token limit: {token_limit}")
send_token_limit = token_limit - 1000
relevant_memory = permanent_memory.get_relevant(str(full_message_history[-5:]), 10)
if cfg.debug_mode:
if cfg.debug:
print('Memory Stats: ', permanent_memory.get_stats())
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
@@ -110,7 +110,7 @@ def chat_with_ai(
# assert tokens_remaining >= 0, "Tokens remaining is negative. This should never happen, please submit a bug report at https://www.github.com/Torantulino/Auto-GPT"
# Debug print the current context
if cfg.debug_mode:
if cfg.debug:
print(f"Token limit: {token_limit}")
print(f"Send Token Count: {current_tokens_used}")
print(f"Tokens remaining for response: {tokens_remaining}")

View File

@@ -91,7 +91,7 @@ def fix_json(json_str: str, schema: str) -> str:
result_string = call_ai_function(
function_string, args, description_string, model=cfg.fast_llm_model
)
if cfg.debug_mode:
if cfg.debug:
print("------------ JSON FIX ATTEMPT ---------------")
print(f"Original JSON: {json_str}")
print("-----------")

View File

@@ -17,6 +17,8 @@ import traceback
import yaml
import argparse
cfg = Config()
def check_openai_api_key():
"""Check if the OpenAI API key is set in config.py or as an environment variable."""
if not cfg.openai_api_key: