diff --git a/.env.template b/.env.template index 3ddb6660..f8e46894 100644 --- a/.env.template +++ b/.env.template @@ -50,8 +50,8 @@ SMART_TOKEN_LIMIT=8000 # MEMORY_BACKEND - Memory backend type (Default: local) MEMORY_BACKEND=local -# MEMORY_EMBEDER - Embeddings model to use (Default: ada) -MEMORY_EMBEDER=ada +# MEMORY_EMBEDDER - Embeddings model to use (Default: ada) +MEMORY_EMBEDDER=ada ### PINECONE # PINECONE_API_KEY - Pinecone API Key (Example: my-pinecone-api-key) diff --git a/scripts/config.py b/scripts/config.py index 38cbd142..fbba5a75 100644 --- a/scripts/config.py +++ b/scripts/config.py @@ -82,7 +82,7 @@ class Config(metaclass=Singleton): # Note that indexes must be created on db 0 in redis, this is not configurable. self.memory_backend = os.getenv("MEMORY_BACKEND", 'local') - self.memory_embeder = os.getenv("MEMORY_EMBEDER", 'ada') + self.memory_embedder = os.getenv("MEMORY_EMBEDDER", 'ada') # Initialize the OpenAI API client openai.api_key = self.openai_api_key diff --git a/scripts/memory/base.py b/scripts/memory/base.py index c3fec628..c1b48d3e 100644 --- a/scripts/memory/base.py +++ b/scripts/memory/base.py @@ -8,25 +8,25 @@ try: from sentence_transformers import SentenceTransformer except ImportError: SentenceTransformer = None - if cfg.memory_embeder == "sbert": + if cfg.memory_embedder == "sbert": print("Error: Sentence Transformers is not installed. Please install sentence_transformers" - " to use BERT as an embeder. Defaulting to Ada.") - cfg.memory_embeder = "ada" + " to use sBERT as an embedder. Defaulting to Ada.") + cfg.memory_embedder = "ada" cfg = Config() -# Dimension of embeddings encoded by models +# Dimension of embeddings encoded by embedders EMBED_DIM = { "ada": 1536, "sbert": 768 -}.get(cfg.memory_embeder, default=1536) +}.get(cfg.memory_embedder, default=1536) def get_embedding(text): text = text.replace("\n", " ") - # use the embeder specified in the config - if cfg.memory_embeder == "sbert": + # use the embedder specified in the config + if cfg.memory_embedder == "sbert": embedding = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", device="cpu").encode(text, show_progress_bar=False) else: embedding = openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]