Extract OpenAI API retry handler and unify ADA embeddings calls. (#3191)

* Extract retry logic, unify embedding functions

* Add some docstrings

* Remove embedding creation from API manager

* Add test suite for retry handler

* Make api manager fixture

* Fix typing

* Streamline tests
This commit is contained in:
James Collins
2023-04-25 11:12:24 -07:00
committed by GitHub
parent 940b115f0a
commit 2619740daa
9 changed files with 242 additions and 93 deletions

View File

@@ -65,32 +65,6 @@ class ApiManager:
self.update_cost(prompt_tokens, completion_tokens, model)
return response
def embedding_create(
self,
text_list: List[str],
model: str = "text-embedding-ada-002",
) -> List[float]:
"""
Create an embedding for the given input text using the specified model.
Args:
text_list (List[str]): Input text for which the embedding is to be created.
model (str, optional): The model to use for generating the embedding.
Returns:
List[float]: The generated embedding as a list of float values.
"""
if cfg.use_azure:
response = openai.Embedding.create(
input=text_list,
engine=cfg.get_azure_deployment_id_for_model(model),
)
else:
response = openai.Embedding.create(input=text_list, model=model)
self.update_cost(response.usage.prompt_tokens, 0, model)
return response["data"][0]["embedding"]
def update_cost(self, prompt_tokens, completion_tokens, model):
"""
Update the total cost, prompt tokens, and completion tokens.

View File

@@ -1,5 +1,6 @@
from __future__ import annotations
import functools
import time
from typing import List, Optional
@@ -13,10 +14,62 @@ from autogpt.logs import logger
from autogpt.types.openai import Message
CFG = Config()
openai.api_key = CFG.openai_api_key
def retry_openai_api(
num_retries: int = 10,
backoff_base: float = 2.0,
warn_user: bool = True,
):
"""Retry an OpenAI API call.
Args:
num_retries int: Number of retries. Defaults to 10.
backoff_base float: Base for exponential backoff. Defaults to 2.
warn_user bool: Whether to warn the user. Defaults to True.
"""
retry_limit_msg = f"{Fore.RED}Error: " f"Reached rate limit, passing...{Fore.RESET}"
api_key_error_msg = (
f"Please double check that you have setup a "
f"{Fore.CYAN + Style.BRIGHT}PAID{Style.RESET_ALL} OpenAI API Account. You can "
f"read more here: {Fore.CYAN}https://github.com/Significant-Gravitas/Auto-GPT#openai-api-keys-configuration{Fore.RESET}"
)
backoff_msg = (
f"{Fore.RED}Error: API Bad gateway. Waiting {{backoff}} seconds...{Fore.RESET}"
)
def _wrapper(func):
@functools.wraps(func)
def _wrapped(*args, **kwargs):
user_warned = not warn_user
num_attempts = num_retries + 1 # +1 for the first attempt
for attempt in range(1, num_attempts + 1):
try:
return func(*args, **kwargs)
except RateLimitError:
if attempt == num_attempts:
raise
logger.debug(retry_limit_msg)
if not user_warned:
logger.double_check(api_key_error_msg)
user_warned = True
except APIError as e:
if (e.http_status != 502) or (attempt == num_attempts):
raise
backoff = backoff_base ** (attempt + 2)
logger.debug(backoff_msg.format(backoff=backoff))
time.sleep(backoff)
return _wrapped
return _wrapper
def call_ai_function(
function: str, args: list, description: str, model: str | None = None
) -> str:
@@ -154,32 +207,46 @@ def create_chat_completion(
return resp
def get_ada_embedding(text):
def get_ada_embedding(text: str) -> List[int]:
"""Get an embedding from the ada model.
Args:
text (str): The text to embed.
Returns:
List[int]: The embedding.
"""
model = "text-embedding-ada-002"
text = text.replace("\n", " ")
return api_manager.embedding_create(
text_list=[text], model="text-embedding-ada-002"
if CFG.use_azure:
kwargs = {"engine": CFG.get_azure_deployment_id_for_model(model)}
else:
kwargs = {"model": model}
embedding = create_embedding(text, **kwargs)
api_manager.update_cost(
prompt_tokens=embedding.usage.prompt_tokens,
completion_tokens=0,
model=model,
)
return embedding["data"][0]["embedding"]
def create_embedding_with_ada(text) -> list:
"""Create an embedding with text-ada-002 using the OpenAI SDK"""
num_retries = 10
for attempt in range(num_retries):
backoff = 2 ** (attempt + 2)
try:
return api_manager.embedding_create(
text_list=[text], model="text-embedding-ada-002"
)
except RateLimitError:
pass
except (APIError, Timeout) as e:
if e.http_status != 502:
raise
if attempt == num_retries - 1:
raise
if CFG.debug_mode:
print(
f"{Fore.RED}Error: ",
f"API Bad gateway. Waiting {backoff} seconds...{Fore.RESET}",
)
time.sleep(backoff)
@retry_openai_api()
def create_embedding(
text: str,
*_,
**kwargs,
) -> openai.Embedding:
"""Create an embedding using the OpenAI API
Args:
text (str): The text to embed.
kwargs: Other arguments to pass to the OpenAI API embedding creation call.
Returns:
openai.Embedding: The embedding object.
"""
return openai.Embedding.create(input=[text], **kwargs)

View File

@@ -7,7 +7,7 @@ from typing import Any, List
import numpy as np
import orjson
from autogpt.llm_utils import create_embedding_with_ada
from autogpt.llm_utils import get_ada_embedding
from autogpt.memory.base import MemoryProviderSingleton
EMBED_DIM = 1536
@@ -63,7 +63,7 @@ class LocalCache(MemoryProviderSingleton):
return ""
self.data.texts.append(text)
embedding = create_embedding_with_ada(text)
embedding = get_ada_embedding(text)
vector = np.array(embedding).astype(np.float32)
vector = vector[np.newaxis, :]
@@ -111,7 +111,7 @@ class LocalCache(MemoryProviderSingleton):
Returns: List[str]
"""
embedding = create_embedding_with_ada(text)
embedding = get_ada_embedding(text)
scores = np.dot(self.data.embeddings, embedding)

View File

@@ -1,7 +1,7 @@
import pinecone
from colorama import Fore, Style
from autogpt.llm_utils import create_embedding_with_ada
from autogpt.llm_utils import get_ada_embedding
from autogpt.logs import logger
from autogpt.memory.base import MemoryProviderSingleton
@@ -44,7 +44,7 @@ class PineconeMemory(MemoryProviderSingleton):
self.index = pinecone.Index(table_name)
def add(self, data):
vector = create_embedding_with_ada(data)
vector = get_ada_embedding(data)
# no metadata here. We may wish to change that long term.
self.index.upsert([(str(self.vec_num), vector, {"raw_text": data})])
_text = f"Inserting data into memory at index: {self.vec_num}:\n data: {data}"
@@ -64,7 +64,7 @@ class PineconeMemory(MemoryProviderSingleton):
:param data: The data to compare to.
:param num_relevant: The number of relevant data to return. Defaults to 5
"""
query_embedding = create_embedding_with_ada(data)
query_embedding = get_ada_embedding(data)
results = self.index.query(
query_embedding, top_k=num_relevant, include_metadata=True
)

View File

@@ -10,7 +10,7 @@ from redis.commands.search.field import TextField, VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
from redis.commands.search.query import Query
from autogpt.llm_utils import create_embedding_with_ada
from autogpt.llm_utils import get_ada_embedding
from autogpt.logs import logger
from autogpt.memory.base import MemoryProviderSingleton
@@ -88,7 +88,7 @@ class RedisMemory(MemoryProviderSingleton):
"""
if "Command Error:" in data:
return ""
vector = create_embedding_with_ada(data)
vector = get_ada_embedding(data)
vector = np.array(vector).astype(np.float32).tobytes()
data_dict = {b"data": data, "embedding": vector}
pipe = self.redis.pipeline()
@@ -130,7 +130,7 @@ class RedisMemory(MemoryProviderSingleton):
Returns: A list of the most relevant data.
"""
query_embedding = create_embedding_with_ada(data)
query_embedding = get_ada_embedding(data)
base_query = f"*=>[KNN {num_relevant} @embedding $vector AS vector_score]"
query = (
Query(base_query)

View File

@@ -3,6 +3,8 @@ from pathlib import Path
import pytest
from dotenv import load_dotenv
from autogpt.api_manager import ApiManager
from autogpt.api_manager import api_manager as api_manager_
from autogpt.config import Config
from autogpt.workspace import Workspace
@@ -29,3 +31,11 @@ def config(workspace: Workspace) -> Config:
config.workspace_path = workspace.root
yield config
config.workspace_path = old_ws_path
@pytest.fixture()
def api_manager() -> ApiManager:
old_attrs = api_manager_.__dict__.copy()
api_manager_.reset()
yield api_manager_
api_manager_.__dict__.update(old_attrs)

View File

@@ -86,37 +86,6 @@ class TestApiManager:
assert api_manager.get_total_completion_tokens() == 20
assert api_manager.get_total_cost() == (10 * 0.002 + 20 * 0.002) / 1000
@staticmethod
def test_embedding_create_invalid_model():
"""Test if an invalid model for embedding raises a KeyError."""
text_list = ["Hello, how are you?"]
model = "invalid-model"
with patch("openai.Embedding.create") as mock_create:
mock_response = MagicMock()
mock_response.usage.prompt_tokens = 5
mock_create.side_effect = KeyError("Invalid model")
with pytest.raises(KeyError):
api_manager.embedding_create(text_list, model=model)
@staticmethod
def test_embedding_create_valid_inputs():
"""Test if valid inputs for embedding result in correct tokens and cost."""
text_list = ["Hello, how are you?"]
model = "text-embedding-ada-002"
with patch("openai.Embedding.create") as mock_create:
mock_response = MagicMock()
mock_response.usage.prompt_tokens = 5
mock_response["data"] = [{"embedding": [0.1, 0.2, 0.3]}]
mock_create.return_value = mock_response
api_manager.embedding_create(text_list, model=model)
assert api_manager.get_total_prompt_tokens() == 5
assert api_manager.get_total_completion_tokens() == 0
assert api_manager.get_total_cost() == (5 * 0.0004) / 1000
def test_getter_methods(self):
"""Test the getter methods for total tokens, cost, and budget."""
api_manager.update_cost(60, 120, "gpt-3.5-turbo")

129
tests/test_llm_utils.py Normal file
View File

@@ -0,0 +1,129 @@
import pytest
from openai.error import APIError, RateLimitError
from autogpt.llm_utils import get_ada_embedding, retry_openai_api
from autogpt.modelsinfo import COSTS
@pytest.fixture(params=[RateLimitError, APIError])
def error(request):
if request.param == APIError:
return request.param("Error", http_status=502)
else:
return request.param("Error")
@pytest.fixture
def mock_create_embedding(mocker):
mock_response = mocker.MagicMock()
mock_response.usage.prompt_tokens = 5
mock_response.__getitem__.side_effect = lambda key: [{"embedding": [0.1, 0.2, 0.3]}]
return mocker.patch(
"autogpt.llm_utils.create_embedding", return_value=mock_response
)
def error_factory(error_instance, error_count, retry_count, warn_user=True):
class RaisesError:
def __init__(self):
self.count = 0
@retry_openai_api(
num_retries=retry_count, backoff_base=0.001, warn_user=warn_user
)
def __call__(self):
self.count += 1
if self.count <= error_count:
raise error_instance
return self.count
return RaisesError()
def test_retry_open_api_no_error(capsys):
@retry_openai_api()
def f():
return 1
result = f()
assert result == 1
output = capsys.readouterr()
assert output.out == ""
assert output.err == ""
@pytest.mark.parametrize(
"error_count, retry_count, failure",
[(2, 10, False), (2, 2, False), (10, 2, True), (3, 2, True), (1, 0, True)],
ids=["passing", "passing_edge", "failing", "failing_edge", "failing_no_retries"],
)
def test_retry_open_api_passing(capsys, error, error_count, retry_count, failure):
call_count = min(error_count, retry_count) + 1
raises = error_factory(error, error_count, retry_count)
if failure:
with pytest.raises(type(error)):
raises()
else:
result = raises()
assert result == call_count
assert raises.count == call_count
output = capsys.readouterr()
if error_count and retry_count:
if type(error) == RateLimitError:
assert "Reached rate limit, passing..." in output.out
assert "Please double check" in output.out
if type(error) == APIError:
assert "API Bad gateway" in output.out
else:
assert output.out == ""
def test_retry_open_api_rate_limit_no_warn(capsys):
error_count = 2
retry_count = 10
raises = error_factory(RateLimitError, error_count, retry_count, warn_user=False)
result = raises()
call_count = min(error_count, retry_count) + 1
assert result == call_count
assert raises.count == call_count
output = capsys.readouterr()
assert "Reached rate limit, passing..." in output.out
assert "Please double check" not in output.out
def test_retry_openapi_other_api_error(capsys):
error_count = 2
retry_count = 10
raises = error_factory(APIError("Error", http_status=500), error_count, retry_count)
with pytest.raises(APIError):
raises()
call_count = 1
assert raises.count == call_count
output = capsys.readouterr()
assert output.out == ""
def test_get_ada_embedding(mock_create_embedding, api_manager):
model = "text-embedding-ada-002"
embedding = get_ada_embedding("test")
mock_create_embedding.assert_called_once_with(
"test", model="text-embedding-ada-002"
)
assert embedding == [0.1, 0.2, 0.3]
cost = COSTS[model]["prompt"]
assert api_manager.get_total_prompt_tokens() == 5
assert api_manager.get_total_completion_tokens() == 0
assert api_manager.get_total_cost() == (5 * cost) / 1000

View File

@@ -21,7 +21,7 @@ def LocalCache():
@pytest.fixture
def mock_embed_with_ada(mocker):
mocker.patch(
"autogpt.memory.local.create_embedding_with_ada",
"autogpt.memory.local.get_ada_embedding",
return_value=[0.1] * EMBED_DIM,
)