mirror of
https://github.com/aljazceru/Auto-GPT.git
synced 2025-12-17 14:04:27 +01:00
Merge branch 'master' into prompt-generator
This commit is contained in:
@@ -1,6 +1,7 @@
|
|||||||
PINECONE_API_KEY=your-pinecone-api-key
|
PINECONE_API_KEY=your-pinecone-api-key
|
||||||
PINECONE_ENV=your-pinecone-region
|
PINECONE_ENV=your-pinecone-region
|
||||||
OPENAI_API_KEY=your-openai-api-key
|
OPENAI_API_KEY=your-openai-api-key
|
||||||
|
TEMPERATURE=1
|
||||||
ELEVENLABS_API_KEY=your-elevenlabs-api-key
|
ELEVENLABS_API_KEY=your-elevenlabs-api-key
|
||||||
ELEVENLABS_VOICE_1_ID=your-voice-id
|
ELEVENLABS_VOICE_1_ID=your-voice-id
|
||||||
ELEVENLABS_VOICE_2_ID=your-voice-id
|
ELEVENLABS_VOICE_2_ID=your-voice-id
|
||||||
@@ -9,11 +10,7 @@ FAST_LLM_MODEL=gpt-3.5-turbo
|
|||||||
GOOGLE_API_KEY=
|
GOOGLE_API_KEY=
|
||||||
CUSTOM_SEARCH_ENGINE_ID=
|
CUSTOM_SEARCH_ENGINE_ID=
|
||||||
USE_AZURE=False
|
USE_AZURE=False
|
||||||
OPENAI_AZURE_API_BASE=your-base-url-for-azure
|
EXECUTE_LOCAL_COMMANDS=False
|
||||||
OPENAI_AZURE_API_VERSION=api-version-for-azure
|
|
||||||
OPENAI_AZURE_DEPLOYMENT_ID=deployment-id-for-azure
|
|
||||||
OPENAI_AZURE_CHAT_DEPLOYMENT_ID=deployment-id-for-azure-chat
|
|
||||||
OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID=deployment-id-for-azure-embeddigs
|
|
||||||
IMAGE_PROVIDER=dalle
|
IMAGE_PROVIDER=dalle
|
||||||
HUGGINGFACE_API_TOKEN=
|
HUGGINGFACE_API_TOKEN=
|
||||||
USE_MAC_OS_TTS=False
|
USE_MAC_OS_TTS=False
|
||||||
|
|||||||
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
2
.github/PULL_REQUEST_TEMPLATE.md
vendored
@@ -26,7 +26,7 @@ By following these guidelines, your PRs are more likely to be merged quickly aft
|
|||||||
- [ ] I have thoroughly tested my changes with multiple different prompts.
|
- [ ] I have thoroughly tested my changes with multiple different prompts.
|
||||||
- [ ] I have considered potential risks and mitigations for my changes.
|
- [ ] I have considered potential risks and mitigations for my changes.
|
||||||
- [ ] I have documented my changes clearly and comprehensively.
|
- [ ] I have documented my changes clearly and comprehensively.
|
||||||
- [ ] I have not snuck in any "extra" small tweaks changes <!-- Submit these as separate Pull Reqests, they are the easiest to merge! -->
|
- [ ] I have not snuck in any "extra" small tweaks changes <!-- Submit these as separate Pull Requests, they are the easiest to merge! -->
|
||||||
|
|
||||||
<!-- If you haven't added tests, please explain why. If you have, check the appropriate box. If you've ensured your PR is atomic and well-documented, check the corresponding boxes. -->
|
<!-- If you haven't added tests, please explain why. If you have, check the appropriate box. If you've ensured your PR is atomic and well-documented, check the corresponding boxes. -->
|
||||||
|
|
||||||
|
|||||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -7,9 +7,11 @@ package-lock.json
|
|||||||
auto_gpt_workspace/*
|
auto_gpt_workspace/*
|
||||||
*.mpeg
|
*.mpeg
|
||||||
.env
|
.env
|
||||||
|
azure.yaml
|
||||||
*venv/*
|
*venv/*
|
||||||
outputs/*
|
outputs/*
|
||||||
ai_settings.yaml
|
ai_settings.yaml
|
||||||
|
last_run_ai_settings.yaml
|
||||||
.vscode
|
.vscode
|
||||||
.idea/*
|
.idea/*
|
||||||
auto-gpt.json
|
auto-gpt.json
|
||||||
@@ -19,3 +21,6 @@ log.txt
|
|||||||
.coverage
|
.coverage
|
||||||
coverage.xml
|
coverage.xml
|
||||||
htmlcov/
|
htmlcov/
|
||||||
|
|
||||||
|
# For Macs Dev Environs: ignoring .Desktop Services_Store
|
||||||
|
.DS_Store
|
||||||
|
|||||||
33
README.md
33
README.md
@@ -2,8 +2,8 @@
|
|||||||
|
|
||||||

|

|
||||||

|

|
||||||
[](https://discord.gg/PQ7VX6TY4t)
|
[](https://discord.gg/PQ7VX6TY4t)
|
||||||
[](https://github.com/Torantulino/Auto-GPT/actions/workflows/unit_tests.yml)
|
[](https://github.com/Torantulino/Auto-GPT/actions/workflows/unit_tests.yml)
|
||||||
|
|
||||||
Auto-GPT is an experimental open-source application showcasing the capabilities of the GPT-4 language model. This program, driven by GPT-4, chains together LLM "thoughts", to autonomously achieve whatever goal you set. As one of the first examples of GPT-4 running fully autonomously, Auto-GPT pushes the boundaries of what is possible with AI.
|
Auto-GPT is an experimental open-source application showcasing the capabilities of the GPT-4 language model. This program, driven by GPT-4, chains together LLM "thoughts", to autonomously achieve whatever goal you set. As one of the first examples of GPT-4 running fully autonomously, Auto-GPT pushes the boundaries of what is possible with AI.
|
||||||
|
|
||||||
@@ -32,21 +32,28 @@ Your support is greatly appreciated
|
|||||||
|
|
||||||
- [Auto-GPT: An Autonomous GPT-4 Experiment](#auto-gpt-an-autonomous-gpt-4-experiment)
|
- [Auto-GPT: An Autonomous GPT-4 Experiment](#auto-gpt-an-autonomous-gpt-4-experiment)
|
||||||
- [Demo (30/03/2023):](#demo-30032023)
|
- [Demo (30/03/2023):](#demo-30032023)
|
||||||
- [💖 Help Fund Auto-GPT's Development](#-help-fund-auto-gpts-development)
|
|
||||||
- [Table of Contents](#table-of-contents)
|
- [Table of Contents](#table-of-contents)
|
||||||
- [🚀 Features](#-features)
|
- [🚀 Features](#-features)
|
||||||
- [📋 Requirements](#-requirements)
|
- [📋 Requirements](#-requirements)
|
||||||
- [💾 Installation](#-installation)
|
- [💾 Installation](#-installation)
|
||||||
- [🔧 Usage](#-usage)
|
- [🔧 Usage](#-usage)
|
||||||
|
- [Logs](#logs)
|
||||||
- [🗣️ Speech Mode](#️-speech-mode)
|
- [🗣️ Speech Mode](#️-speech-mode)
|
||||||
- [🔍 Google API Keys Configuration](#-google-api-keys-configuration)
|
- [🔍 Google API Keys Configuration](#-google-api-keys-configuration)
|
||||||
- [Setting up environment variables](#setting-up-environment-variables)
|
- [Setting up environment variables](#setting-up-environment-variables)
|
||||||
|
- [Redis Setup](#redis-setup)
|
||||||
|
- [🌲 Pinecone API Key Setup](#-pinecone-api-key-setup)
|
||||||
|
- [Setting up environment variables](#setting-up-environment-variables-1)
|
||||||
|
- [Setting Your Cache Type](#setting-your-cache-type)
|
||||||
|
- [View Memory Usage](#view-memory-usage)
|
||||||
- [💀 Continuous Mode ⚠️](#-continuous-mode-️)
|
- [💀 Continuous Mode ⚠️](#-continuous-mode-️)
|
||||||
- [GPT3.5 ONLY Mode](#gpt35-only-mode)
|
- [GPT3.5 ONLY Mode](#gpt35-only-mode)
|
||||||
- [🖼 Image Generation](#image-generation)
|
- [🖼 Image Generation](#-image-generation)
|
||||||
- [⚠️ Limitations](#️-limitations)
|
- [⚠️ Limitations](#️-limitations)
|
||||||
- [🛡 Disclaimer](#-disclaimer)
|
- [🛡 Disclaimer](#-disclaimer)
|
||||||
- [🐦 Connect with Us on Twitter](#-connect-with-us-on-twitter)
|
- [🐦 Connect with Us on Twitter](#-connect-with-us-on-twitter)
|
||||||
|
- [Run tests](#run-tests)
|
||||||
|
- [Run linter](#run-linter)
|
||||||
|
|
||||||
## 🚀 Features
|
## 🚀 Features
|
||||||
|
|
||||||
@@ -96,10 +103,15 @@ pip install -r requirements.txt
|
|||||||
```
|
```
|
||||||
|
|
||||||
4. Rename `.env.template` to `.env` and fill in your `OPENAI_API_KEY`. If you plan to use Speech Mode, fill in your `ELEVEN_LABS_API_KEY` as well.
|
4. Rename `.env.template` to `.env` and fill in your `OPENAI_API_KEY`. If you plan to use Speech Mode, fill in your `ELEVEN_LABS_API_KEY` as well.
|
||||||
|
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
|
||||||
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
|
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
|
||||||
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
|
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and then:
|
||||||
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and provide the `OPENAI_AZURE_API_BASE`, `OPENAI_AZURE_API_VERSION` and `OPENAI_AZURE_DEPLOYMENT_ID` values as explained here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section. Additionally you need separate deployments for both embeddings and chat. Add their ID values to `OPENAI_AZURE_CHAT_DEPLOYMENT_ID` and `OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID` respectively
|
- Rename `azure.yaml.template` to `azure.yaml` and provide the relevant `azure_api_base`, `azure_api_version` and all of the deployment ids for the relevant models in the `azure_model_map` section:
|
||||||
|
- `fast_llm_model_deployment_id` - your gpt-3.5-turbo or gpt-4 deployment id
|
||||||
|
- `smart_llm_model_deployment_id` - your gpt-4 deployment id
|
||||||
|
- `embedding_model_deployment_id` - your text-embedding-ada-002 v2 deployment id
|
||||||
|
- Please specify all of these values as double quoted strings
|
||||||
|
- details can be found here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section and here: https://learn.microsoft.com/en-us/azure/cognitive-services/openai/tutorials/embeddings?tabs=command-line for the embedding model.
|
||||||
|
|
||||||
## 🔧 Usage
|
## 🔧 Usage
|
||||||
|
|
||||||
@@ -115,7 +127,7 @@ python scripts/main.py
|
|||||||
|
|
||||||
### Logs
|
### Logs
|
||||||
|
|
||||||
You will find activity and error logs in the folder `./logs`
|
You will find activity and error logs in the folder `./output/logs`
|
||||||
|
|
||||||
To output debug logs:
|
To output debug logs:
|
||||||
|
|
||||||
@@ -207,7 +219,7 @@ MEMORY_INDEX=whatever
|
|||||||
|
|
||||||
Pinecone enables the storage of vast amounts of vector-based memory, allowing for only relevant memories to be loaded for the agent at any given time.
|
Pinecone enables the storage of vast amounts of vector-based memory, allowing for only relevant memories to be loaded for the agent at any given time.
|
||||||
|
|
||||||
1. Go to app.pinecone.io and make an account if you don't already have one.
|
1. Go to [pinecone](https://app.pinecone.io/) and make an account if you don't already have one.
|
||||||
2. Choose the `Starter` plan to avoid being charged.
|
2. Choose the `Starter` plan to avoid being charged.
|
||||||
3. Find your API key and region under the default project in the left sidebar.
|
3. Find your API key and region under the default project in the left sidebar.
|
||||||
|
|
||||||
@@ -233,7 +245,6 @@ export PINECONE_ENV="Your pinecone region" # something like: us-east4-gcp
|
|||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## Setting Your Cache Type
|
## Setting Your Cache Type
|
||||||
|
|
||||||
By default Auto-GPT is going to use LocalCache instead of redis or Pinecone.
|
By default Auto-GPT is going to use LocalCache instead of redis or Pinecone.
|
||||||
|
|||||||
@@ -1,7 +0,0 @@
|
|||||||
ai_goals:
|
|
||||||
- Increase net worth.
|
|
||||||
- Develop and manage multiple businesses autonomously.
|
|
||||||
- Play to your strengths as a Large Language Model.
|
|
||||||
ai_name: Entrepreneur-GPT
|
|
||||||
ai_role: an AI designed to autonomously develop and run businesses with the sole goal
|
|
||||||
of increasing your net worth.
|
|
||||||
6
azure.yaml.template
Normal file
6
azure.yaml.template
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
azure_api_base: your-base-url-for-azure
|
||||||
|
azure_api_version: api-version-for-azure
|
||||||
|
azure_model_map:
|
||||||
|
fast_llm_model_deployment_id: gpt35-deployment-id-for-azure
|
||||||
|
smart_llm_model_deployment_id: gpt4-deployment-id-for-azure
|
||||||
|
embedding_model_deployment_id: embedding-deployment-id-for-azure
|
||||||
@@ -17,3 +17,4 @@ orjson
|
|||||||
Pillow
|
Pillow
|
||||||
coverage
|
coverage
|
||||||
flake8
|
flake8
|
||||||
|
numpy
|
||||||
|
|||||||
@@ -45,6 +45,7 @@ def improve_code(suggestions: List[str], code: str) -> str:
|
|||||||
result_string = call_ai_function(function_string, args, description_string)
|
result_string = call_ai_function(function_string, args, description_string)
|
||||||
return result_string
|
return result_string
|
||||||
|
|
||||||
|
|
||||||
def write_tests(code: str, focus: List[str]) -> str:
|
def write_tests(code: str, focus: List[str]) -> str:
|
||||||
"""
|
"""
|
||||||
A function that takes in code and focus topics and returns a response from create chat completion api call.
|
A function that takes in code and focus topics and returns a response from create chat completion api call.
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ from urllib.parse import urlparse, urljoin
|
|||||||
|
|
||||||
cfg = Config()
|
cfg = Config()
|
||||||
|
|
||||||
|
|
||||||
# Function to check if the URL is valid
|
# Function to check if the URL is valid
|
||||||
def is_valid_url(url):
|
def is_valid_url(url):
|
||||||
try:
|
try:
|
||||||
@@ -14,49 +15,51 @@ def is_valid_url(url):
|
|||||||
except ValueError:
|
except ValueError:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
# Function to sanitize the URL
|
# Function to sanitize the URL
|
||||||
def sanitize_url(url):
|
def sanitize_url(url):
|
||||||
return urljoin(url, urlparse(url).path)
|
return urljoin(url, urlparse(url).path)
|
||||||
|
|
||||||
# Function to make a request with a specified timeout and handle exceptions
|
|
||||||
def make_request(url, timeout=10):
|
|
||||||
try:
|
|
||||||
response = requests.get(url, headers=cfg.user_agent_header, timeout=timeout)
|
|
||||||
response.raise_for_status()
|
|
||||||
return response
|
|
||||||
except requests.exceptions.RequestException as e:
|
|
||||||
return "Error: " + str(e)
|
|
||||||
|
|
||||||
# Define and check for local file address prefixes
|
# Define and check for local file address prefixes
|
||||||
def check_local_file_access(url):
|
def check_local_file_access(url):
|
||||||
local_prefixes = ['file:///', 'file://localhost', 'http://localhost', 'https://localhost']
|
local_prefixes = ['file:///', 'file://localhost', 'http://localhost', 'https://localhost']
|
||||||
return any(url.startswith(prefix) for prefix in local_prefixes)
|
return any(url.startswith(prefix) for prefix in local_prefixes)
|
||||||
|
|
||||||
def scrape_text(url):
|
|
||||||
"""Scrape text from a webpage"""
|
|
||||||
# Basic check if the URL is valid
|
|
||||||
if not url.startswith('http'):
|
|
||||||
return "Error: Invalid URL"
|
|
||||||
|
|
||||||
|
def get_response(url, headers=cfg.user_agent_header, timeout=10):
|
||||||
|
try:
|
||||||
# Restrict access to local files
|
# Restrict access to local files
|
||||||
if check_local_file_access(url):
|
if check_local_file_access(url):
|
||||||
return "Error: Access to local files is restricted"
|
raise ValueError('Access to local files is restricted')
|
||||||
|
|
||||||
|
# Most basic check if the URL is valid:
|
||||||
|
if not url.startswith('http://') and not url.startswith('https://'):
|
||||||
|
raise ValueError('Invalid URL format')
|
||||||
|
|
||||||
# Validate the input URL
|
|
||||||
if not is_valid_url(url):
|
|
||||||
# Sanitize the input URL
|
|
||||||
sanitized_url = sanitize_url(url)
|
sanitized_url = sanitize_url(url)
|
||||||
|
|
||||||
# Make the request with a timeout and handle exceptions
|
response = requests.get(sanitized_url, headers=headers, timeout=timeout)
|
||||||
response = make_request(sanitized_url)
|
|
||||||
|
|
||||||
if isinstance(response, str):
|
# Check if the response contains an HTTP error
|
||||||
return response
|
if response.status_code >= 400:
|
||||||
else:
|
return None, "Error: HTTP " + str(response.status_code) + " error"
|
||||||
# Sanitize the input URL
|
|
||||||
sanitized_url = sanitize_url(url)
|
|
||||||
|
|
||||||
response = requests.get(sanitized_url, headers=cfg.user_agent_header)
|
return response, None
|
||||||
|
except ValueError as ve:
|
||||||
|
# Handle invalid URL format
|
||||||
|
return None, "Error: " + str(ve)
|
||||||
|
|
||||||
|
except requests.exceptions.RequestException as re:
|
||||||
|
# Handle exceptions related to the HTTP request (e.g., connection errors, timeouts, etc.)
|
||||||
|
return None, "Error: " + str(re)
|
||||||
|
|
||||||
|
|
||||||
|
def scrape_text(url):
|
||||||
|
"""Scrape text from a webpage"""
|
||||||
|
response, error_message = get_response(url)
|
||||||
|
if error_message:
|
||||||
|
return error_message
|
||||||
|
|
||||||
soup = BeautifulSoup(response.text, "html.parser")
|
soup = BeautifulSoup(response.text, "html.parser")
|
||||||
|
|
||||||
@@ -89,11 +92,9 @@ def format_hyperlinks(hyperlinks):
|
|||||||
|
|
||||||
def scrape_links(url):
|
def scrape_links(url):
|
||||||
"""Scrape links from a webpage"""
|
"""Scrape links from a webpage"""
|
||||||
response = requests.get(url, headers=cfg.user_agent_header)
|
response, error_message = get_response(url)
|
||||||
|
if error_message:
|
||||||
# Check if the response contains an HTTP error
|
return error_message
|
||||||
if response.status_code >= 400:
|
|
||||||
return "error"
|
|
||||||
|
|
||||||
soup = BeautifulSoup(response.text, "html.parser")
|
soup = BeautifulSoup(response.text, "html.parser")
|
||||||
|
|
||||||
@@ -131,6 +132,7 @@ def create_message(chunk, question):
|
|||||||
"content": f"\"\"\"{chunk}\"\"\" Using the above text, please answer the following question: \"{question}\" -- if the question cannot be answered using the text, please summarize the text."
|
"content": f"\"\"\"{chunk}\"\"\" Using the above text, please answer the following question: \"{question}\" -- if the question cannot be answered using the text, please summarize the text."
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def summarize_text(text, question):
|
def summarize_text(text, question):
|
||||||
"""Summarize text using the LLM model"""
|
"""Summarize text using the LLM model"""
|
||||||
if not text:
|
if not text:
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ import speak
|
|||||||
from config import Config
|
from config import Config
|
||||||
import ai_functions as ai
|
import ai_functions as ai
|
||||||
from file_operations import read_file, write_to_file, append_to_file, delete_file, search_files
|
from file_operations import read_file, write_to_file, append_to_file, delete_file, search_files
|
||||||
from execute_code import execute_python_file
|
from execute_code import execute_python_file, execute_shell
|
||||||
from json_parser import fix_and_parse_json
|
from json_parser import fix_and_parse_json
|
||||||
from image_gen import generate_image
|
from image_gen import generate_image
|
||||||
from duckduckgo_search import ddg
|
from duckduckgo_search import ddg
|
||||||
@@ -103,6 +103,11 @@ def execute_command(command_name, arguments):
|
|||||||
return ai.write_tests(arguments["code"], arguments.get("focus"))
|
return ai.write_tests(arguments["code"], arguments.get("focus"))
|
||||||
elif command_name == "execute_python_file": # Add this command
|
elif command_name == "execute_python_file": # Add this command
|
||||||
return execute_python_file(arguments["file"])
|
return execute_python_file(arguments["file"])
|
||||||
|
elif command_name == "execute_shell":
|
||||||
|
if cfg.execute_local_commands:
|
||||||
|
return execute_shell(arguments["command_line"])
|
||||||
|
else:
|
||||||
|
return "You are not allowed to run local shell commands. To execute shell commands, EXECUTE_LOCAL_COMMANDS must be set to 'True' in your config. Do not attempt to bypass the restriction."
|
||||||
elif command_name == "generate_image":
|
elif command_name == "generate_image":
|
||||||
return generate_image(arguments["prompt"])
|
return generate_image(arguments["prompt"])
|
||||||
elif command_name == "do_nothing":
|
elif command_name == "do_nothing":
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
import abc
|
import abc
|
||||||
import os
|
import os
|
||||||
import openai
|
import openai
|
||||||
|
import yaml
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
# Load environment variables from .env file
|
# Load environment variables from .env file
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
@@ -43,14 +44,13 @@ class Config(metaclass=Singleton):
|
|||||||
self.smart_token_limit = int(os.getenv("SMART_TOKEN_LIMIT", 8000))
|
self.smart_token_limit = int(os.getenv("SMART_TOKEN_LIMIT", 8000))
|
||||||
|
|
||||||
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
self.temperature = int(os.getenv("TEMPERATURE", "1"))
|
||||||
self.use_azure = False
|
self.use_azure = False
|
||||||
self.use_azure = os.getenv("USE_AZURE") == 'True'
|
self.use_azure = os.getenv("USE_AZURE") == 'True'
|
||||||
|
self.execute_local_commands = os.getenv('EXECUTE_LOCAL_COMMANDS', 'False') == 'True'
|
||||||
|
|
||||||
if self.use_azure:
|
if self.use_azure:
|
||||||
self.openai_api_base = os.getenv("OPENAI_AZURE_API_BASE")
|
self.load_azure_config()
|
||||||
self.openai_api_version = os.getenv("OPENAI_AZURE_API_VERSION")
|
|
||||||
self.openai_deployment_id = os.getenv("OPENAI_AZURE_DEPLOYMENT_ID")
|
|
||||||
self.azure_chat_deployment_id = os.getenv("OPENAI_AZURE_CHAT_DEPLOYMENT_ID")
|
|
||||||
self.azure_embeddigs_deployment_id = os.getenv("OPENAI_AZURE_EMBEDDINGS_DEPLOYMENT_ID")
|
|
||||||
openai.api_type = "azure"
|
openai.api_type = "azure"
|
||||||
openai.api_base = self.openai_api_base
|
openai.api_base = self.openai_api_base
|
||||||
openai.api_version = self.openai_api_version
|
openai.api_version = self.openai_api_version
|
||||||
@@ -85,6 +85,46 @@ class Config(metaclass=Singleton):
|
|||||||
# Initialize the OpenAI API client
|
# Initialize the OpenAI API client
|
||||||
openai.api_key = self.openai_api_key
|
openai.api_key = self.openai_api_key
|
||||||
|
|
||||||
|
def get_azure_deployment_id_for_model(self, model: str) -> str:
|
||||||
|
"""
|
||||||
|
Returns the relevant deployment id for the model specified.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
model(str): The model to map to the deployment id.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The matching deployment id if found, otherwise an empty string.
|
||||||
|
"""
|
||||||
|
if model == self.fast_llm_model:
|
||||||
|
return self.azure_model_to_deployment_id_map["fast_llm_model_deployment_id"]
|
||||||
|
elif model == self.smart_llm_model:
|
||||||
|
return self.azure_model_to_deployment_id_map["smart_llm_model_deployment_id"]
|
||||||
|
elif model == "text-embedding-ada-002":
|
||||||
|
return self.azure_model_to_deployment_id_map["embedding_model_deployment_id"]
|
||||||
|
else:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
AZURE_CONFIG_FILE = os.path.join(os.path.dirname(__file__), '..', 'azure.yaml')
|
||||||
|
|
||||||
|
def load_azure_config(self, config_file: str=AZURE_CONFIG_FILE) -> None:
|
||||||
|
"""
|
||||||
|
Loads the configuration parameters for Azure hosting from the specified file path as a yaml file.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
config_file(str): The path to the config yaml file. DEFAULT: "../azure.yaml"
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
with open(config_file) as file:
|
||||||
|
config_params = yaml.load(file, Loader=yaml.FullLoader)
|
||||||
|
except FileNotFoundError:
|
||||||
|
config_params = {}
|
||||||
|
self.openai_api_base = config_params.get("azure_api_base", "")
|
||||||
|
self.openai_api_version = config_params.get("azure_api_version", "")
|
||||||
|
self.azure_model_to_deployment_id_map = config_params.get("azure_model_map", [])
|
||||||
|
|
||||||
def set_continuous_mode(self, value: bool):
|
def set_continuous_mode(self, value: bool):
|
||||||
"""Set the continuous mode value."""
|
"""Set the continuous mode value."""
|
||||||
self.continuous_mode = value
|
self.continuous_mode = value
|
||||||
|
|||||||
@@ -1,17 +1,20 @@
|
|||||||
import docker
|
import docker
|
||||||
import os
|
import os
|
||||||
|
import subprocess
|
||||||
|
|
||||||
|
|
||||||
|
WORKSPACE_FOLDER = "auto_gpt_workspace"
|
||||||
|
|
||||||
|
|
||||||
def execute_python_file(file):
|
def execute_python_file(file):
|
||||||
"""Execute a Python file in a Docker container and return the output"""
|
"""Execute a Python file in a Docker container and return the output"""
|
||||||
workspace_folder = "auto_gpt_workspace"
|
|
||||||
|
|
||||||
print (f"Executing file '{file}' in workspace '{workspace_folder}'")
|
print (f"Executing file '{file}' in workspace '{WORKSPACE_FOLDER}'")
|
||||||
|
|
||||||
if not file.endswith(".py"):
|
if not file.endswith(".py"):
|
||||||
return "Error: Invalid file type. Only .py files are allowed."
|
return "Error: Invalid file type. Only .py files are allowed."
|
||||||
|
|
||||||
file_path = os.path.join(workspace_folder, file)
|
file_path = os.path.join(WORKSPACE_FOLDER, file)
|
||||||
|
|
||||||
if not os.path.isfile(file_path):
|
if not os.path.isfile(file_path):
|
||||||
return f"Error: File '{file}' does not exist."
|
return f"Error: File '{file}' does not exist."
|
||||||
@@ -19,14 +22,31 @@ def execute_python_file(file):
|
|||||||
try:
|
try:
|
||||||
client = docker.from_env()
|
client = docker.from_env()
|
||||||
|
|
||||||
|
image_name = 'python:3.10'
|
||||||
|
try:
|
||||||
|
client.images.get(image_name)
|
||||||
|
print(f"Image '{image_name}' found locally")
|
||||||
|
except docker.errors.ImageNotFound:
|
||||||
|
print(f"Image '{image_name}' not found locally, pulling from Docker Hub")
|
||||||
|
# Use the low-level API to stream the pull response
|
||||||
|
low_level_client = docker.APIClient()
|
||||||
|
for line in low_level_client.pull(image_name, stream=True, decode=True):
|
||||||
|
# Print the status and progress, if available
|
||||||
|
status = line.get('status')
|
||||||
|
progress = line.get('progress')
|
||||||
|
if status and progress:
|
||||||
|
print(f"{status}: {progress}")
|
||||||
|
elif status:
|
||||||
|
print(status)
|
||||||
|
|
||||||
# You can replace 'python:3.8' with the desired Python image/version
|
# You can replace 'python:3.8' with the desired Python image/version
|
||||||
# You can find available Python images on Docker Hub:
|
# You can find available Python images on Docker Hub:
|
||||||
# https://hub.docker.com/_/python
|
# https://hub.docker.com/_/python
|
||||||
container = client.containers.run(
|
container = client.containers.run(
|
||||||
'python:3.10',
|
image_name,
|
||||||
f'python {file}',
|
f'python {file}',
|
||||||
volumes={
|
volumes={
|
||||||
os.path.abspath(workspace_folder): {
|
os.path.abspath(WORKSPACE_FOLDER): {
|
||||||
'bind': '/workspace',
|
'bind': '/workspace',
|
||||||
'mode': 'ro'}},
|
'mode': 'ro'}},
|
||||||
working_dir='/workspace',
|
working_dir='/workspace',
|
||||||
@@ -46,3 +66,22 @@ def execute_python_file(file):
|
|||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return f"Error: {str(e)}"
|
return f"Error: {str(e)}"
|
||||||
|
|
||||||
|
def execute_shell(command_line):
|
||||||
|
|
||||||
|
current_dir = os.getcwd()
|
||||||
|
|
||||||
|
if not WORKSPACE_FOLDER in current_dir: # Change dir into workspace if necessary
|
||||||
|
work_dir = os.path.join(os.getcwd(), WORKSPACE_FOLDER)
|
||||||
|
os.chdir(work_dir)
|
||||||
|
|
||||||
|
print (f"Executing command '{command_line}' in working directory '{os.getcwd()}'")
|
||||||
|
|
||||||
|
result = subprocess.run(command_line, capture_output=True, shell=True)
|
||||||
|
output = f"STDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
|
||||||
|
|
||||||
|
# Change back to whatever the prior working dir was
|
||||||
|
|
||||||
|
os.chdir(current_dir)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|||||||
@@ -5,11 +5,11 @@ cfg = Config()
|
|||||||
openai.api_key = cfg.openai_api_key
|
openai.api_key = cfg.openai_api_key
|
||||||
|
|
||||||
# Overly simple abstraction until we create something better
|
# Overly simple abstraction until we create something better
|
||||||
def create_chat_completion(messages, model=None, temperature=None, max_tokens=None)->str:
|
def create_chat_completion(messages, model=None, temperature=cfg.temperature, max_tokens=None)->str:
|
||||||
"""Create a chat completion using the OpenAI API"""
|
"""Create a chat completion using the OpenAI API"""
|
||||||
if cfg.use_azure:
|
if cfg.use_azure:
|
||||||
response = openai.ChatCompletion.create(
|
response = openai.ChatCompletion.create(
|
||||||
deployment_id=cfg.azure_chat_deployment_id,
|
deployment_id=cfg.get_azure_deployment_id_for_model(model),
|
||||||
model=model,
|
model=model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
|
|||||||
@@ -124,6 +124,12 @@ class Logger(metaclass=Singleton):
|
|||||||
self.logger.setLevel(level)
|
self.logger.setLevel(level)
|
||||||
self.typing_logger.setLevel(level)
|
self.typing_logger.setLevel(level)
|
||||||
|
|
||||||
|
def double_check(self, additionalText=None):
|
||||||
|
if not additionalText:
|
||||||
|
additionalText = "Please ensure you've setup and configured everything correctly. Read https://github.com/Torantulino/Auto-GPT#readme to double check. You can also create a github issue or join the discord and ask there!"
|
||||||
|
|
||||||
|
self.typewriter_log("DOUBLE CHECK CONFIGURATION", Fore.YELLOW, additionalText)
|
||||||
|
|
||||||
|
|
||||||
'''
|
'''
|
||||||
Output stream to console using simulated typing
|
Output stream to console using simulated typing
|
||||||
@@ -164,8 +170,6 @@ class ConsoleHandler(logging.StreamHandler):
|
|||||||
Allows to handle custom placeholders 'title_color' and 'message_no_color'.
|
Allows to handle custom placeholders 'title_color' and 'message_no_color'.
|
||||||
To use this formatter, make sure to pass 'color', 'title' as log extras.
|
To use this formatter, make sure to pass 'color', 'title' as log extras.
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
|
||||||
class AutoGptFormatter(logging.Formatter):
|
class AutoGptFormatter(logging.Formatter):
|
||||||
def format(self, record: LogRecord) -> str:
|
def format(self, record: LogRecord) -> str:
|
||||||
if (hasattr(record, 'color')):
|
if (hasattr(record, 'color')):
|
||||||
|
|||||||
@@ -310,15 +310,14 @@ def parse_arguments():
|
|||||||
supported_memory = get_supported_memory_backends()
|
supported_memory = get_supported_memory_backends()
|
||||||
chosen = args.memory_type
|
chosen = args.memory_type
|
||||||
if not chosen in supported_memory:
|
if not chosen in supported_memory:
|
||||||
print_to_console("ONLY THE FOLLOWING MEMORY BACKENDS ARE SUPPORTED: ", Fore.RED, f'{supported_memory}')
|
logger.typewriter_log("ONLY THE FOLLOWING MEMORY BACKENDS ARE SUPPORTED: ", Fore.RED, f'{supported_memory}')
|
||||||
print_to_console(f"Defaulting to: ", Fore.YELLOW, cfg.memory_backend)
|
logger.typewriter_log(f"Defaulting to: ", Fore.YELLOW, cfg.memory_backend)
|
||||||
else:
|
else:
|
||||||
cfg.memory_backend = chosen
|
cfg.memory_backend = chosen
|
||||||
|
|
||||||
|
|
||||||
# TODO: fill in llm values here
|
# TODO: fill in llm values here
|
||||||
check_openai_api_key()
|
check_openai_api_key()
|
||||||
cfg = Config()
|
|
||||||
parse_arguments()
|
parse_arguments()
|
||||||
logger.set_level(logging.DEBUG if cfg.debug_mode else logging.INFO)
|
logger.set_level(logging.DEBUG if cfg.debug_mode else logging.INFO)
|
||||||
ai_name = ""
|
ai_name = ""
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
from memory.local import LocalCache
|
from memory.local import LocalCache
|
||||||
|
from memory.no_memory import NoMemory
|
||||||
|
|
||||||
# List of supported memory backends
|
# List of supported memory backends
|
||||||
# Add a backend to this list if the import attempt is successful
|
# Add a backend to this list if the import attempt is successful
|
||||||
@@ -34,6 +35,8 @@ def get_memory(cfg, init=False):
|
|||||||
" use Redis as a memory backend.")
|
" use Redis as a memory backend.")
|
||||||
else:
|
else:
|
||||||
memory = RedisMemory(cfg)
|
memory = RedisMemory(cfg)
|
||||||
|
elif cfg.memory_backend == "no_memory":
|
||||||
|
memory = NoMemory(cfg)
|
||||||
|
|
||||||
if memory is None:
|
if memory is None:
|
||||||
memory = LocalCache(cfg)
|
memory = LocalCache(cfg)
|
||||||
@@ -50,4 +53,5 @@ __all__ = [
|
|||||||
"LocalCache",
|
"LocalCache",
|
||||||
"RedisMemory",
|
"RedisMemory",
|
||||||
"PineconeMemory",
|
"PineconeMemory",
|
||||||
|
"NoMemory"
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -2,13 +2,13 @@
|
|||||||
import abc
|
import abc
|
||||||
from config import AbstractSingleton, Config
|
from config import AbstractSingleton, Config
|
||||||
import openai
|
import openai
|
||||||
cfg = Config()
|
|
||||||
|
|
||||||
|
cfg = Config()
|
||||||
|
|
||||||
def get_ada_embedding(text):
|
def get_ada_embedding(text):
|
||||||
text = text.replace("\n", " ")
|
text = text.replace("\n", " ")
|
||||||
if cfg.use_azure:
|
if cfg.use_azure:
|
||||||
return openai.Embedding.create(input=[text], engine=cfg.azure_embeddigs_deployment_id, model="text-embedding-ada-002")["data"][0]["embedding"]
|
return openai.Embedding.create(input=[text], engine=cfg.get_azure_deployment_id_for_model("text-embedding-ada-002"))["data"][0]["embedding"]
|
||||||
else:
|
else:
|
||||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||||
|
|
||||||
|
|||||||
65
scripts/memory/no_memory.py
Normal file
65
scripts/memory/no_memory.py
Normal file
@@ -0,0 +1,65 @@
|
|||||||
|
from typing import Optional, List, Any
|
||||||
|
|
||||||
|
from memory.base import MemoryProviderSingleton
|
||||||
|
|
||||||
|
class NoMemory(MemoryProviderSingleton):
|
||||||
|
def __init__(self, cfg):
|
||||||
|
"""
|
||||||
|
Initializes the NoMemory provider.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cfg: The config object.
|
||||||
|
|
||||||
|
Returns: None
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def add(self, data: str) -> str:
|
||||||
|
"""
|
||||||
|
Adds a data point to the memory. No action is taken in NoMemory.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: The data to add.
|
||||||
|
|
||||||
|
Returns: An empty string.
|
||||||
|
"""
|
||||||
|
return ""
|
||||||
|
|
||||||
|
def get(self, data: str) -> Optional[List[Any]]:
|
||||||
|
"""
|
||||||
|
Gets the data from the memory that is most relevant to the given data.
|
||||||
|
NoMemory always returns None.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: The data to compare to.
|
||||||
|
|
||||||
|
Returns: None
|
||||||
|
"""
|
||||||
|
return None
|
||||||
|
|
||||||
|
def clear(self) -> str:
|
||||||
|
"""
|
||||||
|
Clears the memory. No action is taken in NoMemory.
|
||||||
|
|
||||||
|
Returns: An empty string.
|
||||||
|
"""
|
||||||
|
return ""
|
||||||
|
|
||||||
|
def get_relevant(self, data: str, num_relevant: int = 5) -> Optional[List[Any]]:
|
||||||
|
"""
|
||||||
|
Returns all the data in the memory that is relevant to the given data.
|
||||||
|
NoMemory always returns None.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: The data to compare to.
|
||||||
|
num_relevant: The number of relevant data to return.
|
||||||
|
|
||||||
|
Returns: None
|
||||||
|
"""
|
||||||
|
return None
|
||||||
|
|
||||||
|
def get_stats(self):
|
||||||
|
"""
|
||||||
|
Returns: An empty dictionary as there are no stats in NoMemory.
|
||||||
|
"""
|
||||||
|
return {}
|
||||||
@@ -2,7 +2,8 @@
|
|||||||
import pinecone
|
import pinecone
|
||||||
|
|
||||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||||
|
from logger import logger
|
||||||
|
from colorama import Fore, Style
|
||||||
|
|
||||||
class PineconeMemory(MemoryProviderSingleton):
|
class PineconeMemory(MemoryProviderSingleton):
|
||||||
def __init__(self, cfg):
|
def __init__(self, cfg):
|
||||||
@@ -17,6 +18,15 @@ class PineconeMemory(MemoryProviderSingleton):
|
|||||||
# for now this works.
|
# for now this works.
|
||||||
# we'll need a more complicated and robust system if we want to start with memory.
|
# we'll need a more complicated and robust system if we want to start with memory.
|
||||||
self.vec_num = 0
|
self.vec_num = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
pinecone.whoami()
|
||||||
|
except Exception as e:
|
||||||
|
logger.typewriter_log("FAILED TO CONNECT TO PINECONE", Fore.RED, Style.BRIGHT + str(e) + Style.RESET_ALL)
|
||||||
|
logger.double_check("Please ensure you have setup and configured Pinecone properly for use. " +
|
||||||
|
f"You can check out {Fore.CYAN + Style.BRIGHT}https://github.com/Torantulino/Auto-GPT#-pinecone-api-key-setup{Style.RESET_ALL} to ensure you've set up everything correctly.")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
if table_name not in pinecone.list_indexes():
|
if table_name not in pinecone.list_indexes():
|
||||||
pinecone.create_index(table_name, dimension=dimension, metric=metric, pod_type=pod_type)
|
pinecone.create_index(table_name, dimension=dimension, metric=metric, pod_type=pod_type)
|
||||||
self.index = pinecone.Index(table_name)
|
self.index = pinecone.Index(table_name)
|
||||||
|
|||||||
@@ -7,6 +7,8 @@ from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||||
|
from logger import logger
|
||||||
|
from colorama import Fore, Style
|
||||||
|
|
||||||
|
|
||||||
SCHEMA = [
|
SCHEMA = [
|
||||||
@@ -44,6 +46,16 @@ class RedisMemory(MemoryProviderSingleton):
|
|||||||
db=0 # Cannot be changed
|
db=0 # Cannot be changed
|
||||||
)
|
)
|
||||||
self.cfg = cfg
|
self.cfg = cfg
|
||||||
|
|
||||||
|
# Check redis connection
|
||||||
|
try:
|
||||||
|
self.redis.ping()
|
||||||
|
except redis.ConnectionError as e:
|
||||||
|
logger.typewriter_log("FAILED TO CONNECT TO REDIS", Fore.RED, Style.BRIGHT + str(e) + Style.RESET_ALL)
|
||||||
|
logger.double_check("Please ensure you have setup and configured Redis properly for use. " +
|
||||||
|
f"You can check out {Fore.CYAN + Style.BRIGHT}https://github.com/Torantulino/Auto-GPT#redis-setup{Style.RESET_ALL} to ensure you've set up everything correctly.")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
if cfg.wipe_redis_on_start:
|
if cfg.wipe_redis_on_start:
|
||||||
self.redis.flushall()
|
self.redis.flushall()
|
||||||
try:
|
try:
|
||||||
|
|||||||
@@ -13,12 +13,14 @@ class TestParseJson(unittest.TestCase):
|
|||||||
def test_invalid_json_minor(self):
|
def test_invalid_json_minor(self):
|
||||||
# Test that an invalid JSON string can be fixed with gpt
|
# Test that an invalid JSON string can be fixed with gpt
|
||||||
json_str = '{"name": "John", "age": 30, "city": "New York",}'
|
json_str = '{"name": "John", "age": 30, "city": "New York",}'
|
||||||
self.assertRaises(Exception, fix_and_parse_json, json_str, try_to_fix_with_gpt=False)
|
with self.assertRaises(Exception):
|
||||||
|
fix_and_parse_json(json_str, try_to_fix_with_gpt=False)
|
||||||
|
|
||||||
def test_invalid_json_major_with_gpt(self):
|
def test_invalid_json_major_with_gpt(self):
|
||||||
# Test that an invalid JSON string raises an error when try_to_fix_with_gpt is False
|
# Test that an invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||||
json_str = 'BEGIN: "name": "John" - "age": 30 - "city": "New York" :END'
|
json_str = 'BEGIN: "name": "John" - "age": 30 - "city": "New York" :END'
|
||||||
self.assertRaises(Exception, fix_and_parse_json, json_str, try_to_fix_with_gpt=False)
|
with self.assertRaises(Exception):
|
||||||
|
fix_and_parse_json(json_str, try_to_fix_with_gpt=False)
|
||||||
|
|
||||||
def test_invalid_json_major_without_gpt(self):
|
def test_invalid_json_major_without_gpt(self):
|
||||||
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
|
# Test that a REALLY invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||||
|
|||||||
118
tests/unit/test_browse_scrape_links.py
Normal file
118
tests/unit/test_browse_scrape_links.py
Normal file
@@ -0,0 +1,118 @@
|
|||||||
|
|
||||||
|
# Generated by CodiumAI
|
||||||
|
|
||||||
|
# Dependencies:
|
||||||
|
# pip install pytest-mock
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from scripts.browse import scrape_links
|
||||||
|
|
||||||
|
"""
|
||||||
|
Code Analysis
|
||||||
|
|
||||||
|
Objective:
|
||||||
|
The objective of the 'scrape_links' function is to scrape hyperlinks from a
|
||||||
|
given URL and return them in a formatted way.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- url: a string representing the URL to be scraped.
|
||||||
|
|
||||||
|
Flow:
|
||||||
|
1. Send a GET request to the given URL using the requests library and the user agent header from the config file.
|
||||||
|
2. Check if the response contains an HTTP error. If it does, return "error".
|
||||||
|
3. Parse the HTML content of the response using the BeautifulSoup library.
|
||||||
|
4. Remove any script and style tags from the parsed HTML.
|
||||||
|
5. Extract all hyperlinks from the parsed HTML using the 'extract_hyperlinks' function.
|
||||||
|
6. Format the extracted hyperlinks using the 'format_hyperlinks' function.
|
||||||
|
7. Return the formatted hyperlinks.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- A list of formatted hyperlinks.
|
||||||
|
|
||||||
|
Additional aspects:
|
||||||
|
- The function uses the 'requests' and 'BeautifulSoup' libraries to send HTTP
|
||||||
|
requests and parse HTML content, respectively.
|
||||||
|
- The 'extract_hyperlinks' function is called to extract hyperlinks from the parsed HTML.
|
||||||
|
- The 'format_hyperlinks' function is called to format the extracted hyperlinks.
|
||||||
|
- The function checks for HTTP errors and returns "error" if any are found.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
class TestScrapeLinks:
|
||||||
|
|
||||||
|
# Tests that the function returns a list of formatted hyperlinks when
|
||||||
|
# provided with a valid url that returns a webpage with hyperlinks.
|
||||||
|
def test_valid_url_with_hyperlinks(self):
|
||||||
|
url = "https://www.google.com"
|
||||||
|
result = scrape_links(url)
|
||||||
|
assert len(result) > 0
|
||||||
|
assert isinstance(result, list)
|
||||||
|
assert isinstance(result[0], str)
|
||||||
|
|
||||||
|
# Tests that the function returns correctly formatted hyperlinks when given a valid url.
|
||||||
|
def test_valid_url(self, mocker):
|
||||||
|
# Mock the requests.get() function to return a response with sample HTML containing hyperlinks
|
||||||
|
mock_response = mocker.Mock()
|
||||||
|
mock_response.status_code = 200
|
||||||
|
mock_response.text = "<html><body><a href='https://www.google.com'>Google</a></body></html>"
|
||||||
|
mocker.patch('requests.get', return_value=mock_response)
|
||||||
|
|
||||||
|
# Call the function with a valid URL
|
||||||
|
result = scrape_links("https://www.example.com")
|
||||||
|
|
||||||
|
# Assert that the function returns correctly formatted hyperlinks
|
||||||
|
assert result == ["Google (https://www.google.com)"]
|
||||||
|
|
||||||
|
# Tests that the function returns "error" when given an invalid url.
|
||||||
|
def test_invalid_url(self, mocker):
|
||||||
|
# Mock the requests.get() function to return an HTTP error response
|
||||||
|
mock_response = mocker.Mock()
|
||||||
|
mock_response.status_code = 404
|
||||||
|
mocker.patch('requests.get', return_value=mock_response)
|
||||||
|
|
||||||
|
# Call the function with an invalid URL
|
||||||
|
result = scrape_links("https://www.invalidurl.com")
|
||||||
|
|
||||||
|
# Assert that the function returns "error"
|
||||||
|
assert "Error:" in result
|
||||||
|
|
||||||
|
# Tests that the function returns an empty list when the html contains no hyperlinks.
|
||||||
|
def test_no_hyperlinks(self, mocker):
|
||||||
|
# Mock the requests.get() function to return a response with sample HTML containing no hyperlinks
|
||||||
|
mock_response = mocker.Mock()
|
||||||
|
mock_response.status_code = 200
|
||||||
|
mock_response.text = "<html><body><p>No hyperlinks here</p></body></html>"
|
||||||
|
mocker.patch('requests.get', return_value=mock_response)
|
||||||
|
|
||||||
|
# Call the function with a URL containing no hyperlinks
|
||||||
|
result = scrape_links("https://www.example.com")
|
||||||
|
|
||||||
|
# Assert that the function returns an empty list
|
||||||
|
assert result == []
|
||||||
|
|
||||||
|
# Tests that scrape_links() correctly extracts and formats hyperlinks from
|
||||||
|
# a sample HTML containing a few hyperlinks.
|
||||||
|
def test_scrape_links_with_few_hyperlinks(self, mocker):
|
||||||
|
# Mock the requests.get() function to return a response with a sample HTML containing hyperlinks
|
||||||
|
mock_response = mocker.Mock()
|
||||||
|
mock_response.status_code = 200
|
||||||
|
mock_response.text = """
|
||||||
|
<html>
|
||||||
|
<body>
|
||||||
|
<div id="google-link"><a href="https://www.google.com">Google</a></div>
|
||||||
|
<div id="github"><a href="https://github.com">GitHub</a></div>
|
||||||
|
<div id="CodiumAI"><a href="https://www.codium.ai">CodiumAI</a></div>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
"""
|
||||||
|
mocker.patch('requests.get', return_value=mock_response)
|
||||||
|
|
||||||
|
# Call the function being tested
|
||||||
|
result = scrape_links("https://www.example.com")
|
||||||
|
|
||||||
|
# Assert that the function returns a list of formatted hyperlinks
|
||||||
|
assert isinstance(result, list)
|
||||||
|
assert len(result) == 3
|
||||||
|
assert result[0] == "Google (https://www.google.com)"
|
||||||
|
assert result[1] == "GitHub (https://github.com)"
|
||||||
|
assert result[2] == "CodiumAI (https://www.codium.ai)"
|
||||||
@@ -2,7 +2,6 @@
|
|||||||
# Generated by CodiumAI
|
# Generated by CodiumAI
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
import tests.context
|
|
||||||
|
|
||||||
from scripts.browse import scrape_text
|
from scripts.browse import scrape_text
|
||||||
|
|
||||||
@@ -10,7 +9,8 @@ from scripts.browse import scrape_text
|
|||||||
Code Analysis
|
Code Analysis
|
||||||
|
|
||||||
Objective:
|
Objective:
|
||||||
The objective of the "scrape_text" function is to scrape the text content from a given URL and return it as a string, after removing any unwanted HTML tags and scripts.
|
The objective of the "scrape_text" function is to scrape the text content from
|
||||||
|
a given URL and return it as a string, after removing any unwanted HTML tags and scripts.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- url: a string representing the URL of the webpage to be scraped.
|
- url: a string representing the URL of the webpage to be scraped.
|
||||||
@@ -33,6 +33,7 @@ Additional aspects:
|
|||||||
- The function uses a generator expression to split the text into lines and chunks, which can improve performance for large amounts of text.
|
- The function uses a generator expression to split the text into lines and chunks, which can improve performance for large amounts of text.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
class TestScrapeText:
|
class TestScrapeText:
|
||||||
|
|
||||||
# Tests that scrape_text() returns the expected text when given a valid URL.
|
# Tests that scrape_text() returns the expected text when given a valid URL.
|
||||||
Reference in New Issue
Block a user